pd.wide_to_long
You can add a prefix to your year columns and then feed directly to pd.wide_to_long
. I won't pretend this is efficient, but it may in certain situations be more convenient than pd.melt
, e.g. when your columns already have an appropriate prefix.
df.columns = np.hstack((df.columns[:2], df.columns[2:].map(lambda x: f'Value{x}')))
res = pd.wide_to_long(df, stubnames=['Value'], i='name', j='Date').reset_index()\
.sort_values(['location', 'name'])
print(res)
name Date location Value
0 test Jan-2010 A 12
2 test Feb-2010 A 20
4 test March-2010 A 30
1 foo Jan-2010 B 18
3 foo Feb-2010 B 20
5 foo March-2010 B 25