I like Greg solution, but I wish it was more python like. I feel it would be faster and more readable; so after some time of coding I came out with this.
The first two functions are needed to make the cartesian product of lists. And can be reused whnever this problem arises. By the way, I had to program this myself, if anyone knows of a standard solution for this problem, please feel free to contact me.
"Factorgenerator" now returns a dictionary. And then the dictionary is fed into "divisors", who uses it to generate first a list of lists, where each list is the list of the factors of the form p^n with p prime. Then we make the cartesian product of those lists, and we finally use Greg' solution to generate the divisor. We sort them, and return them.
I tested it and it seem to be a bit faster than the previous version. I tested it as part of a bigger program, so I can't really say how much is it faster though.
Pietro Speroni (pietrosperoni dot it)
from math import sqrt
##############################################################
### cartesian product of lists ##################################
##############################################################
def appendEs2Sequences(sequences,es):
result=[]
if not sequences:
for e in es:
result.append([e])
else:
for e in es:
result+=[seq+[e] for seq in sequences]
return result
def cartesianproduct(lists):
"""
given a list of lists,
returns all the possible combinations taking one element from each list
The list does not have to be of equal length
"""
return reduce(appendEs2Sequences,lists,[])
##############################################################
### prime factors of a natural ##################################
##############################################################
def primefactors(n):
'''lists prime factors, from greatest to smallest'''
i = 2
while i<=sqrt(n):
if n%i==0:
l = primefactors(n/i)
l.append(i)
return l
i+=1
return [n] # n is prime
##############################################################
### factorization of a natural ##################################
##############################################################
def factorGenerator(n):
p = primefactors(n)
factors={}
for p1 in p:
try:
factors[p1]+=1
except KeyError:
factors[p1]=1
return factors
def divisors(n):
factors = factorGenerator(n)
divisors=[]
listexponents=[map(lambda x:k**x,range(0,factors[k]+1)) for k in factors.keys()]
listfactors=cartesianproduct(listexponents)
for f in listfactors:
divisors.append(reduce(lambda x, y: x*y, f, 1))
divisors.sort()
return divisors
print divisors(60668796879)
P.S. it is the first time I am posting to stackoverflow. I am looking forward for any feedback.