Many of the answers here rely on the widely-used mathematical definition [1]:
- Discriminative models directly learn the conditional predictive distribution
p(y|x)
.- Generative models learn the joint distribution
p(x,y)
(or rather,p(x|y)
andp(y)
).
- Predictive distribution
p(y|x)
can be obtained with Bayes' rule.
Although very useful, this narrow definition assumes the supervised setting, and is less handy when examining unsupervised or semi-supervised methods. It also doesn't apply to many contemporary approaches for deep generative modeling. For example, now we have implicit generative models, e.g. Generative Adversarial Networks (GANs), which are sampling-based and don't even explicitly model the probability density p(x)
(instead learning a divergence measure via the discriminator network). But we call them "generative models” since they are used to generate (high-dimensional [10]) samples.
A broader and more fundamental definition [2] seems equally fitting for this general question:
- Discriminative models learn the boundary between classes.
- So they can discriminate between different kinds of data instances.
- Generative models learn the distribution of data.
- So they can generate new data instances.
Even so, this question implies somewhat of a false dichotomy [3]. The generative-discriminative "dichotomy" is in fact a spectrum which you can even smoothly interpolate between [4].
As a consequence, this distinction gets arbitrary and confusing, especially when many popular models do not neatly fall into one or the other [5,6], or are in fact hybrid models (combinations of classically "discriminative" and "generative" models).
Nevertheless it's still a highly useful and common distinction to make. We can list some clear-cut examples of generative and discriminative models, both canonical and recent:
There is also a lot of interesting work deeply examining the generative-discriminative divide [7] and spectrum [4,8], and even transforming discriminative models into generative models [9].
In the end, definitions are constantly evolving, especially in this rapidly growing field :) It's best to take them with a pinch of salt, and maybe even redefine them for yourself and others.