[python] How to efficiently calculate a running standard deviation?

I have an array of lists of numbers, e.g.:

[0] (0.01, 0.01, 0.02, 0.04, 0.03)
[1] (0.00, 0.02, 0.02, 0.03, 0.02)
[2] (0.01, 0.02, 0.02, 0.03, 0.02)
     ...
[n] (0.01, 0.00, 0.01, 0.05, 0.03)

What I would like to do is efficiently calculate the mean and standard deviation at each index of a list, across all array elements.

To do the mean, I have been looping through the array and summing the value at a given index of a list. At the end, I divide each value in my "averages list" by n (I am working with a population, not a sample from the population).

To do the standard deviation, I loop through again, now that I have the mean calculated.

I would like to avoid going through the array twice, once for the mean and then once for the SD (after I have a mean).

Is there an efficient method for calculating both values, only going through the array once? Any code in an interpreted language (e.g. Perl or Python) or pseudocode is fine.

This question is related to python perl statistics

The answer is


Here is a literal pure Python translation of the Welford's algorithm implementation from http://www.johndcook.com/standard_deviation.html:

https://github.com/liyanage/python-modules/blob/master/running_stats.py

import math

class RunningStats:

    def __init__(self):
        self.n = 0
        self.old_m = 0
        self.new_m = 0
        self.old_s = 0
        self.new_s = 0

    def clear(self):
        self.n = 0

    def push(self, x):
        self.n += 1

        if self.n == 1:
            self.old_m = self.new_m = x
            self.old_s = 0
        else:
            self.new_m = self.old_m + (x - self.old_m) / self.n
            self.new_s = self.old_s + (x - self.old_m) * (x - self.new_m)

            self.old_m = self.new_m
            self.old_s = self.new_s

    def mean(self):
        return self.new_m if self.n else 0.0

    def variance(self):
        return self.new_s / (self.n - 1) if self.n > 1 else 0.0

    def standard_deviation(self):
        return math.sqrt(self.variance())

Usage:

rs = RunningStats()
rs.push(17.0)
rs.push(19.0)
rs.push(24.0)

mean = rs.mean()
variance = rs.variance()
stdev = rs.standard_deviation()

print(f'Mean: {mean}, Variance: {variance}, Std. Dev.: {stdev}')

How big is your array? Unless it is zillions of elements long, don't worry about looping through it twice. The code is simple and easily tested.

My preference would be to use the numpy array maths extension to convert your array of arrays into a numpy 2D array and get the standard deviation directly:

>>> x = [ [ 1, 2, 4, 3, 4, 5 ], [ 3, 4, 5, 6, 7, 8 ] ] * 10
>>> import numpy
>>> a = numpy.array(x)
>>> a.std(axis=0) 
array([ 1. ,  1. ,  0.5,  1.5,  1.5,  1.5])
>>> a.mean(axis=0)
array([ 2. ,  3. ,  4.5,  4.5,  5.5,  6.5])

If that's not an option and you need a pure Python solution, keep reading...

If your array is

x = [ 
      [ 1, 2, 4, 3, 4, 5 ],
      [ 3, 4, 5, 6, 7, 8 ],
      ....
]

Then the standard deviation is:

d = len(x[0])
n = len(x)
sum_x = [ sum(v[i] for v in x) for i in range(d) ]
sum_x2 = [ sum(v[i]**2 for v in x) for i in range(d) ]
std_dev = [ sqrt((sx2 - sx**2)/N)  for sx, sx2 in zip(sum_x, sum_x2) ]

If you are determined to loop through your array only once, the running sums can be combined.

sum_x  = [ 0 ] * d
sum_x2 = [ 0 ] * d
for v in x:
   for i, t in enumerate(v):
   sum_x[i] += t
   sum_x2[i] += t**2

This isn't nearly as elegant as the list comprehension solution above.


The basic answer is to accumulate the sum of both x (call it 'sum_x1') and x2 (call it 'sum_x2') as you go. The value of the standard deviation is then:

stdev = sqrt((sum_x2 / n) - (mean * mean)) 

where

mean = sum_x / n

This is the sample standard deviation; you get the population standard deviation using 'n' instead of 'n - 1' as the divisor.

You may need to worry about the numerical stability of taking the difference between two large numbers if you are dealing with large samples. Go to the external references in other answers (Wikipedia, etc) for more information.


The Python runstats Module is for just this sort of thing. Install runstats from PyPI:

pip install runstats

Runstats summaries can produce the mean, variance, standard deviation, skewness, and kurtosis in a single pass of data. We can use this to create your "running" version.

from runstats import Statistics

stats = [Statistics() for num in range(len(data[0]))]

for row in data:

    for index, val in enumerate(row):
        stats[index].push(val)

    for index, stat in enumerate(stats):
        print 'Index', index, 'mean:', stat.mean()
        print 'Index', index, 'standard deviation:', stat.stddev()

Statistics summaries are based on the Knuth and Welford method for computing standard deviation in one pass as described in the Art of Computer Programming, Vol 2, p. 232, 3rd edition. The benefit of this is numerically stable and accurate results.

Disclaimer: I am the author the Python runstats module.


Here's a "one-liner", spread over multiple lines, in functional programming style:

def variance(data, opt=0):
    return (lambda (m2, i, _): m2 / (opt + i - 1))(
        reduce(
            lambda (m2, i, avg), x:
            (
                m2 + (x - avg) ** 2 * i / (i + 1),
                i + 1,
                avg + (x - avg) / (i + 1)
            ),
            data,
            (0, 0, 0)))

Perhaps not what you were asking, but ... If you use a numpy array, it will do the work for you, efficiently:

from numpy import array

nums = array(((0.01, 0.01, 0.02, 0.04, 0.03),
              (0.00, 0.02, 0.02, 0.03, 0.02),
              (0.01, 0.02, 0.02, 0.03, 0.02),
              (0.01, 0.00, 0.01, 0.05, 0.03)))

print nums.std(axis=1)
# [ 0.0116619   0.00979796  0.00632456  0.01788854]

print nums.mean(axis=1)
# [ 0.022  0.018  0.02   0.02 ]

By the way, there's some interesting discussion in this blog post and comments on one-pass methods for computing means and variances:


n=int(raw_input("Enter no. of terms:"))

L=[]

for i in range (1,n+1):

    x=float(raw_input("Enter term:"))

    L.append(x)

sum=0

for i in range(n):

    sum=sum+L[i]

avg=sum/n

sumdev=0

for j in range(n):

    sumdev=sumdev+(L[j]-avg)**2

dev=(sumdev/n)**0.5

print "Standard deviation is", dev

Here is a practical example of how you could implement a running standard deviation with python and numpy:

a = np.arange(1, 10)
s = 0
s2 = 0
for i in range(0, len(a)):
    s += a[i]
    s2 += a[i] ** 2 
    n = (i + 1)
    m = s / n
    std = np.sqrt((s2 / n) - (m * m))
    print(std, np.std(a[:i + 1]))

This will print out the calculated standard deviation and a check standard deviation calculated with numpy:

0.0 0.0
0.5 0.5
0.8164965809277263 0.816496580927726
1.118033988749895 1.118033988749895
1.4142135623730951 1.4142135623730951
1.707825127659933 1.707825127659933
2.0 2.0
2.29128784747792 2.29128784747792
2.5819888974716116 2.581988897471611

I am just using the formula described in this thread:

stdev = sqrt((sum_x2 / n) - (mean * mean)) 

You could look at the Wikipedia article on Standard Deviation, in particular the section about Rapid calculation methods.

There's also an article I found that uses Python, you should be able to use the code in it without much change: Subliminal Messages - Running Standard Deviations.


I like to express the update this way:

def running_update(x, N, mu, var):
    '''
        @arg x: the current data sample
        @arg N : the number of previous samples
        @arg mu: the mean of the previous samples
        @arg var : the variance over the previous samples
        @retval (N+1, mu', var') -- updated mean, variance and count
    '''
    N = N + 1
    rho = 1.0/N
    d = x - mu
    mu += rho*d
    var += rho*((1-rho)*d**2 - var)
    return (N, mu, var)

so that a one-pass function would look like this:

def one_pass(data):
    N = 0
    mu = 0.0
    var = 0.0
    for x in data:
        N = N + 1
        rho = 1.0/N
        d = x - mu
        mu += rho*d
        var += rho*((1-rho)*d**2 - var)
        # could yield here if you want partial results
   return (N, mu, var)

note that this is calculating the sample variance (1/N), not the unbiased estimate of the population variance (which uses a 1/(N-1) normalzation factor). Unlike the other answers, the variable, var, that is tracking the running variance does not grow in proportion to the number of samples. At all times it is just the variance of the set of samples seen so far (there is no final "dividing by n" in getting the variance).

In a class it would look like this:

class RunningMeanVar(object):
    def __init__(self):
        self.N = 0
        self.mu = 0.0
        self.var = 0.0
    def push(self, x):
        self.N = self.N + 1
        rho = 1.0/N
        d = x-self.mu
        self.mu += rho*d
        self.var += + rho*((1-rho)*d**2-self.var)
    # reset, accessors etc. can be setup as you see fit

This also works for weighted samples:

def running_update(w, x, N, mu, var):
    '''
        @arg w: the weight of the current sample
        @arg x: the current data sample
        @arg mu: the mean of the previous N sample
        @arg var : the variance over the previous N samples
        @arg N : the number of previous samples
        @retval (N+w, mu', var') -- updated mean, variance and count
    '''
    N = N + w
    rho = w/N
    d = x - mu
    mu += rho*d
    var += rho*((1-rho)*d**2 - var)
    return (N, mu, var)

Have a look at PDL (pronounced "piddle!").

This is the Perl Data Language which is designed for high precision mathematics and scientific computing.

Here is an example using your figures....

use strict;
use warnings;
use PDL;

my $figs = pdl [
    [0.01, 0.01, 0.02, 0.04, 0.03],
    [0.00, 0.02, 0.02, 0.03, 0.02],
    [0.01, 0.02, 0.02, 0.03, 0.02],
    [0.01, 0.00, 0.01, 0.05, 0.03],
];

my ( $mean, $prms, $median, $min, $max, $adev, $rms ) = statsover( $figs );

say "Mean scores:     ", $mean;
say "Std dev? (adev): ", $adev;
say "Std dev? (prms): ", $prms;
say "Std dev? (rms):  ", $rms;


Which produces:

Mean scores:     [0.022 0.018 0.02 0.02]
Std dev? (adev): [0.0104 0.0072 0.004 0.016]
Std dev? (prms): [0.013038405 0.010954451 0.0070710678 0.02]
Std dev? (rms):  [0.011661904 0.009797959 0.0063245553 0.017888544]


Have a look at PDL::Primitive for more information on the statsover function. This seems to suggest that ADEV is the "standard deviation".

However it maybe PRMS (which Sinan's Statistics::Descriptive example show) or RMS (which ars's NumPy example shows). I guess one of these three must be right ;-)

For more PDL information have a look at:


As the following answer describes: Does pandas/scipy/numpy provide a cumulative standard deviation function? The Python Pandas module contains a method to calculate the running or cumulative standard deviation. For that you'll have to convert your data into a pandas dataframe (or a series if it is 1D), but there are functions for that.


Statistics::Descriptive is a very decent Perl module for these types of calculations:

#!/usr/bin/perl

use strict; use warnings;

use Statistics::Descriptive qw( :all );

my $data = [
    [ 0.01, 0.01, 0.02, 0.04, 0.03 ],
    [ 0.00, 0.02, 0.02, 0.03, 0.02 ],
    [ 0.01, 0.02, 0.02, 0.03, 0.02 ],
    [ 0.01, 0.00, 0.01, 0.05, 0.03 ],
];

my $stat = Statistics::Descriptive::Full->new;
# You also have the option of using sparse data structures

for my $ref ( @$data ) {
    $stat->add_data( @$ref );
    printf "Running mean: %f\n", $stat->mean;
    printf "Running stdev: %f\n", $stat->standard_deviation;
}
__END__

Output:

C:\Temp> g
Running mean: 0.022000
Running stdev: 0.013038
Running mean: 0.020000
Running stdev: 0.011547
Running mean: 0.020000
Running stdev: 0.010000
Running mean: 0.020000
Running stdev: 0.012566

I think this issue will help you. Standard deviation


Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to perl

The program can't start because api-ms-win-crt-runtime-l1-1-0.dll is missing while starting Apache server on my computer "End of script output before headers" error in Apache Perl - Multiple condition if statement without duplicating code? How to decrypt hash stored by bcrypt Split a string into array in Perl Turning multiple lines into one comma separated line String compare in Perl with "eq" vs "==" how to remove the first two columns in a file using shell (awk, sed, whatever) Find everything between two XML tags with RegEx Difference between \w and \b regular expression meta characters

Examples related to statistics

Function to calculate R2 (R-squared) in R pandas: find percentile stats of a given column What exactly does numpy.exp() do? Find p-value (significance) in scikit-learn LinearRegression How to plot ROC curve in Python Pandas - Compute z-score for all columns Calculating percentile of dataset column How to normalize an array in NumPy to a unit vector? How to find row number of a value in R code np.mean() vs np.average() in Python NumPy?