[r] How to sum a variable by group

The answer provided by rcs works and is simple. However, if you are handling larger datasets and need a performance boost there is a faster alternative:

library(data.table)
data = data.table(Category=c("First","First","First","Second","Third", "Third", "Second"), 
                  Frequency=c(10,15,5,2,14,20,3))
data[, sum(Frequency), by = Category]
#    Category V1
# 1:    First 30
# 2:   Second  5
# 3:    Third 34
system.time(data[, sum(Frequency), by = Category] )
# user    system   elapsed 
# 0.008     0.001     0.009 

Let's compare that to the same thing using data.frame and the above above:

data = data.frame(Category=c("First","First","First","Second","Third", "Third", "Second"),
                  Frequency=c(10,15,5,2,14,20,3))
system.time(aggregate(data$Frequency, by=list(Category=data$Category), FUN=sum))
# user    system   elapsed 
# 0.008     0.000     0.015 

And if you want to keep the column this is the syntax:

data[,list(Frequency=sum(Frequency)),by=Category]
#    Category Frequency
# 1:    First        30
# 2:   Second         5
# 3:    Third        34

The difference will become more noticeable with larger datasets, as the code below demonstrates:

data = data.table(Category=rep(c("First", "Second", "Third"), 100000),
                  Frequency=rnorm(100000))
system.time( data[,sum(Frequency),by=Category] )
# user    system   elapsed 
# 0.055     0.004     0.059 
data = data.frame(Category=rep(c("First", "Second", "Third"), 100000), 
                  Frequency=rnorm(100000))
system.time( aggregate(data$Frequency, by=list(Category=data$Category), FUN=sum) )
# user    system   elapsed 
# 0.287     0.010     0.296 

For multiple aggregations, you can combine lapply and .SD as follows

data[, lapply(.SD, sum), by = Category]
#    Category Frequency
# 1:    First        30
# 2:   Second         5
# 3:    Third        34

Examples related to r

How to get AIC from Conway–Maxwell-Poisson regression via COM-poisson package in R? R : how to simply repeat a command? session not created: This version of ChromeDriver only supports Chrome version 74 error with ChromeDriver Chrome using Selenium How to show code but hide output in RMarkdown? remove kernel on jupyter notebook Function to calculate R2 (R-squared) in R Center Plot title in ggplot2 R ggplot2: stat_count() must not be used with a y aesthetic error in Bar graph R multiple conditions in if statement What does "The following object is masked from 'package:xxx'" mean?

Examples related to dataframe

Trying to merge 2 dataframes but get ValueError How to show all of columns name on pandas dataframe? Python Pandas - Find difference between two data frames Pandas get the most frequent values of a column Display all dataframe columns in a Jupyter Python Notebook How to convert column with string type to int form in pyspark data frame? Display/Print one column from a DataFrame of Series in Pandas Binning column with python pandas Selection with .loc in python Set value to an entire column of a pandas dataframe

Examples related to aggregate

Pandas group-by and sum SELECT list is not in GROUP BY clause and contains nonaggregated column Aggregate multiple columns at once Pandas sum by groupby, but exclude certain columns Extract the maximum value within each group in a dataframe How to group dataframe rows into list in pandas groupby Mean per group in a data.frame Summarizing multiple columns with dplyr? data.frame Group By column Compute mean and standard deviation by group for multiple variables in a data.frame

Examples related to r-faq

What does "The following object is masked from 'package:xxx'" mean? What does "Error: object '<myvariable>' not found" mean? How do I deal with special characters like \^$.?*|+()[{ in my regex? What does %>% function mean in R? How to plot a function curve in R Use dynamic variable names in `dplyr` Error: unexpected symbol/input/string constant/numeric constant/SPECIAL in my code How should I deal with "package 'xxx' is not available (for R version x.y.z)" warning? How to select the row with the maximum value in each group R data formats: RData, Rda, Rds etc