[c++] std::string formatting like sprintf

Modern C++ makes this super simple.

C++20

C++20 introduces std::format, which allows you to do exactly that. It uses replacement fields similar to those in python:

#include <iostream>
#include <format>
 
int main() {
    std::cout << std::format("Hello {}!\n", "world");
}

Code from cppreference.com, CC BY-SA and GFDL

Check out the compiler support page to see if it's available in your standard library implementation. As of 2020-11-06, it's not supported by any, so you'll have to resort to the C++11 solution below.


C++11

With C++11s std::snprintf, this already became a pretty easy and safe task.

#include <memory>
#include <string>
#include <stdexcept>

template<typename ... Args>
std::string string_format( const std::string& format, Args ... args )
{
    int size = snprintf( nullptr, 0, format.c_str(), args ... ) + 1; // Extra space for '\0'
    if( size <= 0 ){ throw std::runtime_error( "Error during formatting." ); }
    std::unique_ptr<char[]> buf( new char[ size ] ); 
    snprintf( buf.get(), size, format.c_str(), args ... );
    return std::string( buf.get(), buf.get() + size - 1 ); // We don't want the '\0' inside
}

The code snippet above is licensed under CC0 1.0.

Line by line explanation:

Aim: Write to a char* by using std::snprintf and then convert that to a std::string.

First, we determine the desired length of the char array using a special condition in snprintf. From cppreference.com:

Return value

[...] If the resulting string gets truncated due to buf_size limit, function returns the total number of characters (not including the terminating null-byte) which would have been written, if the limit was not imposed.

This means that the desired size is the number of characters plus one, so that the null-terminator will sit after all other characters and that it can be cut off by the string constructor again. This issue was explained by @alexk7 in the comments.

int size = snprintf( nullptr, 0, format.c_str(), args ... ) + 1;

snprintf will return a negative number if an error occurred, so we then check whether the formatting worked as desired. Not doing this could lead to silent errors or the allocation of a huge buffer, as pointed out by @ead in the comments.

if( size <= 0 ){ throw std::runtime_error( "Error during formatting." ); }

Next, we allocate a new character array and assign it to a std::unique_ptr. This is generally advised, as you won't have to manually delete it again.

Note that this is not a safe way to allocate a unique_ptr with user-defined types as you can not deallocate the memory if the constructor throws an exception!

std::unique_ptr<char[]> buf( new char[ size ] );

After that, we can of course just use snprintf for its intended use and write the formatted string to the char[].

snprintf( buf.get(), size, format.c_str(), args ... );

Finally, we create and return a new std::string from that, making sure to omit the null-terminator at the end.

return std::string( buf.get(), buf.get() + size - 1 );

You can see an example in action here.


If you also want to use std::string in the argument list, take a look at this gist.


Additional information for Visual Studio users:

As explained in this answer, Microsoft renamed std::snprintf to _snprintf (yes, without std::). MS further set it as deprecated and advises to use _snprintf_s instead, however _snprintf_s won't accept the buffer to be zero or smaller than the formatted output and will not calculate the outputs length if that occurs. So in order to get rid of the deprecation warnings during compilation, you can insert the following line at the top of the file which contains the use of _snprintf:

#pragma warning(disable : 4996)

Final thoughts

A lot of answers to this question were written before the time of C++11 and use fixed buffer lengths or vargs. Unless you're stuck with old versions of C++, I wouldn't recommend using those solutions. Ideally, go the C++20 way.

Because the C++11 solution in this answer uses templates, it can generate quite a bit of code if it is used a lot. However, unless you're developing for an environment with very limited space for binaries, this won't be a problem and is still a vast improvement over the other solutions in both clarity and security.

If space efficiency is super important, these two solution with vargs and vsnprintf can be useful. DO NOT USE any solutions with fixed buffer lengths, that is just asking for trouble.

Examples related to c++

Method Call Chaining; returning a pointer vs a reference? How can I tell if an algorithm is efficient? Difference between opening a file in binary vs text How can compare-and-swap be used for a wait-free mutual exclusion for any shared data structure? Install Qt on Ubuntu #include errors detected in vscode Cannot open include file: 'stdio.h' - Visual Studio Community 2017 - C++ Error How to fix the error "Windows SDK version 8.1" was not found? Visual Studio 2017 errors on standard headers How do I check if a Key is pressed on C++

Examples related to string

How to split a string in two and store it in a field String method cannot be found in a main class method Kotlin - How to correctly concatenate a String Replacing a character from a certain index Remove quotes from String in Python Detect whether a Python string is a number or a letter How does String substring work in Swift How does String.Index work in Swift swift 3.0 Data to String? How to parse JSON string in Typescript

Examples related to formatting

How to add empty spaces into MD markdown readme on GitHub? VBA: Convert Text to Number How to change indentation in Visual Studio Code? How do you change the formatting options in Visual Studio Code? (Excel) Conditional Formatting based on Adjacent Cell Value 80-characters / right margin line in Sublime Text 3 Format certain floating dataframe columns into percentage in pandas Format JavaScript date as yyyy-mm-dd AngularJS format JSON string output converting multiple columns from character to numeric format in r

Examples related to stdstring

Is it possible to use std::string in a constexpr? Error: invalid operands of types ‘const char [35]’ and ‘const char [2]’ to binary ‘operator+’ Remove First and Last Character C++ Concatenating strings doesn't work as expected What does string::npos mean in this code? How to replace all occurrences of a character in string? std::string formatting like sprintf convert a char* to std::string How to get the number of characters in a std::string? c++ integer->std::string conversion. Simple function?

Examples related to c++-standard-library

What does string::npos mean in this code? Deleting elements from std::set while iterating std::string formatting like sprintf std::queue iteration How to convert std::string to lower case?