[python] In-place type conversion of a NumPy array

You can make a view with a different dtype, and then copy in-place into the view:

import numpy as np
x = np.arange(10, dtype='int32')
y = x.view('float32')
y[:] = x

print(y)

yields

array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.], dtype=float32)

To show the conversion was in-place, note that copying from x to y altered x:

print(x)

prints

array([         0, 1065353216, 1073741824, 1077936128, 1082130432,
       1084227584, 1086324736, 1088421888, 1090519040, 1091567616])