[java] is there a 'block until condition becomes true' function in java?

I'm writing a listener thread for a server, and at the moment I'm using:

while (true){
    try {
        if (condition){
            //do something
            condition=false;
        }
        sleep(1000);

    } catch (InterruptedException ex){
        Logger.getLogger(server.class.getName()).log(Level.SEVERE, null, ex);
    }
}

With the code above, I'm running into issues with the run function eating all the cpu time looping. The sleep function works, but it seems be a makeshift fix, not a solution.

Is there some function which would block until the variable 'condition' became 'true'? Or is continual looping the standard method of waiting until a variable's value changes?

This question is related to java multithreading block

The answer is


You could use a semaphore.

While the condition is not met, another thread acquires the semaphore.
Your thread would try to acquire it with acquireUninterruptibly()
or tryAcquire(int permits, long timeout, TimeUnit unit) and would be blocked.

When the condition is met, the semaphore is also released and your thread would acquire it.

You could also try using a SynchronousQueue or a CountDownLatch.


Similar to EboMike's answer you can use a mechanism similar to wait/notify/notifyAll but geared up for using a Lock.

For example,

public void doSomething() throws InterruptedException {
    lock.lock();
    try {
        condition.await(); // releases lock and waits until doSomethingElse is called
    } finally {
        lock.unlock();
    }
}

public void doSomethingElse() {
    lock.lock();
    try {
        condition.signal();
    } finally {
        lock.unlock();
    }
}

Where you'll wait for some condition which is notified by another thread (in this case calling doSomethingElse), at that point, the first thread will continue...

Using Locks over intrinsic synchronisation has lots of advantages but I just prefer having an explicit Condition object to represent the condition (you can have more than one which is a nice touch for things like producer-consumer).

Also, I can't help but notice how you deal with the interrupted exception in your example. You probably shouldn't consume the exception like this, instead reset the interrupt status flag using Thread.currentThread().interrupt.

This because if the exception is thrown, the interrupt status flag will have been reset (it's saying "I no longer remember being interrupted, I won't be able to tell anyone else that I have been if they ask") and another process may rely on this question. The example being that something else has implemented an interruption policy based on this... phew. A further example might be that your interruption policy, rather that while(true) might have been implemented as while(!Thread.currentThread().isInterrupted() (which will also make your code be more... socially considerate).

So, in summary, using Condition is rougly equivalent to using wait/notify/notifyAll when you want to use a Lock, logging is evil and swallowing InterruptedException is naughty ;)


As nobody published a solution with CountDownLatch. What about:

public class Lockeable {
    private final CountDownLatch countDownLatch = new CountDownLatch(1);

    public void doAfterEvent(){
        countDownLatch.await();
        doSomething();
    }

    public void reportDetonatingEvent(){
        countDownLatch.countDown();
    }
}

EboMike's answer and Toby's answer are both on the right track, but they both contain a fatal flaw. The flaw is called lost notification.

The problem is, if a thread calls foo.notify(), it will not do anything at all unless some other thread is already sleeping in a foo.wait() call. The object, foo, does not remember that it was notified.

There's a reason why you aren't allowed to call foo.wait() or foo.notify() unless the thread is synchronized on foo. It's because the only way to avoid lost notification is to protect the condition with a mutex. When it's done right, it looks like this:

Consumer thread:

try {
    synchronized(foo) {
        while(! conditionIsTrue()) {
            foo.wait();
        }
        doSomethingThatRequiresConditionToBeTrue();
    }
} catch (InterruptedException e) {
    handleInterruption();
}

Producer thread:

synchronized(foo) {
    doSomethingThatMakesConditionTrue();
    foo.notify();
}

The code that changes the condition and the code that checks the condition is all synchronized on the same object, and the consumer thread explicitly tests the condition before it waits. There is no way for the consumer to miss the notification and end up stuck forever in a wait() call when the condition is already true.

Also note that the wait() is in a loop. That's because, in the general case, by the time the consumer re-acquires the foo lock and wakes up, some other thread might have made the condition false again. Even if that's not possible in your program, what is possible, in some operating systems, is for foo.wait() to return even when foo.notify() has not been called. That's called a spurious wakeup, and it is allowed to happen because it makes wait/notify easier to implement on certain operating systems.


Lock-free solution(?)

I had the same issue, but I wanted a solution that didn't use locks.

Problem: I have at most one thread consuming from a queue. Multiple producer threads are constantly inserting into the queue and need to notify the consumer if it's waiting. The queue is lock-free so using locks for notification causes unnecessary blocking in producer threads. Each producer thread needs to acquire the lock before it can notify the waiting consumer. I believe I came up with a lock-free solution using LockSupport and AtomicReferenceFieldUpdater. If a lock-free barrier exists within the JDK, I couldn't find it. Both CyclicBarrier and CoundDownLatch use locks internally from what I could find.

This is my slightly abbreviated code. Just to be clear, this code will only allow one thread to wait at a time. It could be modified to allow for multiple awaiters/consumers by using some type of atomic collection to store multiple owner (a ConcurrentMap may work).

I have used this code and it seems to work. I have not tested it extensively. I suggest you read the documentation for LockSupport before use.

/* I release this code into the public domain.
 * http://unlicense.org/UNLICENSE
 */

import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;
import java.util.concurrent.locks.LockSupport;

/**
 * A simple barrier for awaiting a signal.
 * Only one thread at a time may await the signal.
 */
public class SignalBarrier {
    /**
     * The Thread that is currently awaiting the signal.
     * !!! Don't call this directly !!!
     */
    @SuppressWarnings("unused")
    private volatile Thread _owner;

    /** Used to update the owner atomically */
    private static final AtomicReferenceFieldUpdater<SignalBarrier, Thread> ownerAccess =
        AtomicReferenceFieldUpdater.newUpdater(SignalBarrier.class, Thread.class, "_owner");

    /** Create a new SignalBarrier without an owner. */
    public SignalBarrier() {
        _owner = null;
    }

    /**
     * Signal the owner that the barrier is ready.
     * This has no effect if the SignalBarrer is unowned.
     */
    public void signal() {
        // Remove the current owner of this barrier.
        Thread t = ownerAccess.getAndSet(this, null);

        // If the owner wasn't null, unpark it.
        if (t != null) {
            LockSupport.unpark(t);
        }
    }

    /**
     * Claim the SignalBarrier and block until signaled.
     *
     * @throws IllegalStateException If the SignalBarrier already has an owner.
     * @throws InterruptedException If the thread is interrupted while waiting.
     */
    public void await() throws InterruptedException {
        // Get the thread that would like to await the signal.
        Thread t = Thread.currentThread();

        // If a thread is attempting to await, the current owner should be null.
        if (!ownerAccess.compareAndSet(this, null, t)) {
            throw new IllegalStateException("A second thread tried to acquire a signal barrier that is already owned.");
        }

        // The current thread has taken ownership of this barrier.
        // Park the current thread until the signal. Record this
        // signal barrier as the 'blocker'.
        LockSupport.park(this);
        // If a thread has called #signal() the owner should already be null.
        // However the documentation for LockSupport.unpark makes it clear that
        // threads can wake up for absolutely no reason. Do a compare and set
        // to make sure we don't wipe out a new owner, keeping in mind that only
        // thread should be awaiting at any given moment!
        ownerAccess.compareAndSet(this, t, null);

        // Check to see if we've been unparked because of a thread interrupt.
        if (t.isInterrupted())
            throw new InterruptedException();
    }

    /**
     * Claim the SignalBarrier and block until signaled or the timeout expires.
     *
     * @throws IllegalStateException If the SignalBarrier already has an owner.
     * @throws InterruptedException If the thread is interrupted while waiting.
     *
     * @param timeout The timeout duration in nanoseconds.
     * @return The timeout minus the number of nanoseconds that passed while waiting.
     */
    public long awaitNanos(long timeout) throws InterruptedException {
        if (timeout <= 0)
            return 0;
        // Get the thread that would like to await the signal.
        Thread t = Thread.currentThread();

        // If a thread is attempting to await, the current owner should be null.
        if (!ownerAccess.compareAndSet(this, null, t)) {
            throw new IllegalStateException("A second thread tried to acquire a signal barrier is already owned.");
        }

        // The current thread owns this barrier.
        // Park the current thread until the signal. Record this
        // signal barrier as the 'blocker'.
        // Time the park.
        long start = System.nanoTime();
        LockSupport.parkNanos(this, timeout);
        ownerAccess.compareAndSet(this, t, null);
        long stop = System.nanoTime();

        // Check to see if we've been unparked because of a thread interrupt.
        if (t.isInterrupted())
            throw new InterruptedException();

        // Return the number of nanoseconds left in the timeout after what we
        // just waited.
        return Math.max(timeout - stop + start, 0L);
    }
}

To give a vague example of usage, I'll adopt james large's example:

SignalBarrier barrier = new SignalBarrier();

Consumer thread (singular, not plural!):

try {
    while(!conditionIsTrue()) {
        barrier.await();
    }
    doSomethingThatRequiresConditionToBeTrue();
} catch (InterruptedException e) {
    handleInterruption();
}

Producer thread(s):

doSomethingThatMakesConditionTrue();
barrier.signal();