Basically the answer lies in what really happens when a module is required via require
statement. Assuming this is the first time the module is being required.
For example:
var x = require('file1.js');
contents of file1.js:
module.exports = '123';
When the above statement is executed, a Module
object is created. Its constructor function is:
function Module(id, parent) {
this.id = id;
this.exports = {};
this.parent = parent;
if (parent && parent.children) {
parent.children.push(this);
}
this.filename = null;
this.loaded = false;
this.children = [];
}
As you see each module object has a property with name exports
. This is what is eventually returned as part of require
.
Next step of require is to wrap the contents of file1.js into an anonymous function like below:
(function (exports, require, module, __filename, __dirname) {
//contents from file1.js
module.exports = '123;
});
And this anonymous function is invoked the following way, module
here refers to the Module
Object created earlier.
(function (exports, require, module, __filename, __dirname) {
//contents from file1.js
module.exports = '123;
}) (module.exports,require, module, "path_to_file1.js","directory of the file1.js");
As we can see inside the function, exports
formal argument refers to module.exports
. In essence it's a convenience provided to the module programmer.
However this convenience need to be exercised with care. In any case if trying to assign a new object to exports ensure we do it this way.
exports = module.exports = {};
If we do it following way wrong way, module.exports
will still be pointing to the object created as part of module instance.
exports = {};
As as result adding anything to the above exports object will have no effect to module.exports object and nothing will be exported or returned as part of require.