The quick select algorithm can find the k-th smallest element of an array in linear (O(n)
) running time. Here is an implementation in python:
import random
def partition(L, v):
smaller = []
bigger = []
for val in L:
if val < v: smaller += [val]
if val > v: bigger += [val]
return (smaller, [v], bigger)
def top_k(L, k):
v = L[random.randrange(len(L))]
(left, middle, right) = partition(L, v)
# middle used below (in place of [v]) for clarity
if len(left) == k: return left
if len(left)+1 == k: return left + middle
if len(left) > k: return top_k(left, k)
return left + middle + top_k(right, k - len(left) - len(middle))
def median(L):
n = len(L)
l = top_k(L, n / 2 + 1)
return max(l)