[python] Modifying a subset of rows in a pandas dataframe

For a massive speed increase, use NumPy's where function.

Setup

Create a two-column DataFrame with 100,000 rows with some zeros.

df = pd.DataFrame(np.random.randint(0,3, (100000,2)), columns=list('ab'))

Fast solution with numpy.where

df['b'] = np.where(df.a.values == 0, np.nan, df.b.values)

Timings

%timeit df['b'] = np.where(df.a.values == 0, np.nan, df.b.values)
685 µs ± 6.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

%timeit df.loc[df['a'] == 0, 'b'] = np.nan
3.11 ms ± 17.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Numpy's where is about 4x faster