[algorithm] How to make rounded percentages add up to 100%

Consider the four percentages below, represented as float numbers:

    13.626332%
    47.989636%
     9.596008%
    28.788024%
   -----------
   100.000000%

I need to represent these percentages as whole numbers. If I simply use Math.round(), I end up with a total of 101%.

14 + 48 + 10 + 29 = 101

If I use parseInt(), I end up with a total of 97%.

13 + 47 + 9 + 28 = 97

What's a good algorithm to represent any number of percentages as whole numbers while still maintaining a total of 100%?


Edit: After reading some of the comments and answers, there are clearly many ways to go about solving this.

In my mind, to remain true to the numbers, the "right" result is the one that minimizes the overall error, defined by how much error rounding would introduce relative to the actual value:

        value  rounded     error               decision
   ----------------------------------------------------
    13.626332       14      2.7%          round up (14)
    47.989636       48      0.0%          round up (48)
     9.596008       10      4.0%    don't round up  (9)
    28.788024       29      2.7%          round up (29)

In case of a tie (3.33, 3.33, 3.33) an arbitrary decision can be made (e.g. 3, 4, 3).

This question is related to algorithm math rounding percentage

The answer is


This is a case for banker's rounding, aka 'round half-even'. It is supported by BigDecimal. Its purpose is to ensure that rounding balances out, i.e. doesn't favour either the bank orthe customer.


I have implemented the method from Varun Vohra's answer here for both lists and dicts.

import math
import numbers
import operator
import itertools


def round_list_percentages(number_list):
    """
    Takes a list where all values are numbers that add up to 100,
    and rounds them off to integers while still retaining a sum of 100.

    A total value sum that rounds to 100.00 with two decimals is acceptable.
    This ensures that all input where the values are calculated with [fraction]/[total]
    and the sum of all fractions equal the total, should pass.
    """
    # Check input
    if not all(isinstance(i, numbers.Number) for i in number_list):
        raise ValueError('All values of the list must be a number')

    # Generate a key for each value
    key_generator = itertools.count()
    value_dict = {next(key_generator): value for value in number_list}
    return round_dictionary_percentages(value_dict).values()


def round_dictionary_percentages(dictionary):
    """
    Takes a dictionary where all values are numbers that add up to 100,
    and rounds them off to integers while still retaining a sum of 100.

    A total value sum that rounds to 100.00 with two decimals is acceptable.
    This ensures that all input where the values are calculated with [fraction]/[total]
    and the sum of all fractions equal the total, should pass.
    """
    # Check input
    # Only allow numbers
    if not all(isinstance(i, numbers.Number) for i in dictionary.values()):
        raise ValueError('All values of the dictionary must be a number')
    # Make sure the sum is close enough to 100
    # Round value_sum to 2 decimals to avoid floating point representation errors
    value_sum = round(sum(dictionary.values()), 2)
    if not value_sum == 100:
        raise ValueError('The sum of the values must be 100')

    # Initial floored results
    # Does not add up to 100, so we need to add something
    result = {key: int(math.floor(value)) for key, value in dictionary.items()}

    # Remainders for each key
    result_remainders = {key: value % 1 for key, value in dictionary.items()}
    # Keys sorted by remainder (biggest first)
    sorted_keys = [key for key, value in sorted(result_remainders.items(), key=operator.itemgetter(1), reverse=True)]

    # Otherwise add missing values up to 100
    # One cycle is enough, since flooring removes a max value of < 1 per item,
    # i.e. this loop should always break before going through the whole list
    for key in sorted_keys:
        if sum(result.values()) == 100:
            break
        result[key] += 1

    # Return
    return result

I think the following will achieve what you are after

function func( orig, target ) {

    var i = orig.length, j = 0, total = 0, change, newVals = [], next, factor1, factor2, len = orig.length, marginOfErrors = [];

    // map original values to new array
    while( i-- ) {
        total += newVals[i] = Math.round( orig[i] );
    }

    change = total < target ? 1 : -1;

    while( total !== target ) {

        // Iterate through values and select the one that once changed will introduce
        // the least margin of error in terms of itself. e.g. Incrementing 10 by 1
        // would mean an error of 10% in relation to the value itself.
        for( i = 0; i < len; i++ ) {

            next = i === len - 1 ? 0 : i + 1;

            factor2 = errorFactor( orig[next], newVals[next] + change );
            factor1 = errorFactor( orig[i], newVals[i] + change );

            if(  factor1 > factor2 ) {
                j = next; 
            }
        }

        newVals[j] += change;
        total += change;
    }


    for( i = 0; i < len; i++ ) { marginOfErrors[i] = newVals[i] && Math.abs( orig[i] - newVals[i] ) / orig[i]; }

    // Math.round() causes some problems as it is difficult to know at the beginning
    // whether numbers should have been rounded up or down to reduce total margin of error. 
    // This section of code increments and decrements values by 1 to find the number
    // combination with least margin of error.
    for( i = 0; i < len; i++ ) {
        for( j = 0; j < len; j++ ) {
            if( j === i ) continue;

            var roundUpFactor = errorFactor( orig[i], newVals[i] + 1)  + errorFactor( orig[j], newVals[j] - 1 );
            var roundDownFactor = errorFactor( orig[i], newVals[i] - 1) + errorFactor( orig[j], newVals[j] + 1 );
            var sumMargin = marginOfErrors[i] + marginOfErrors[j];

            if( roundUpFactor < sumMargin) { 
                newVals[i] = newVals[i] + 1;
                newVals[j] = newVals[j] - 1;
                marginOfErrors[i] = newVals[i] && Math.abs( orig[i] - newVals[i] ) / orig[i];
                marginOfErrors[j] = newVals[j] && Math.abs( orig[j] - newVals[j] ) / orig[j];
            }

            if( roundDownFactor < sumMargin ) { 
                newVals[i] = newVals[i] - 1;
                newVals[j] = newVals[j] + 1;
                marginOfErrors[i] = newVals[i] && Math.abs( orig[i] - newVals[i] ) / orig[i];
                marginOfErrors[j] = newVals[j] && Math.abs( orig[j] - newVals[j] ) / orig[j];
            }

        }
    }

    function errorFactor( oldNum, newNum ) {
        return Math.abs( oldNum - newNum ) / oldNum;
    }

    return newVals;
}


func([16.666, 16.666, 16.666, 16.666, 16.666, 16.666], 100); // => [16, 16, 17, 17, 17, 17]
func([33.333, 33.333, 33.333], 100); // => [34, 33, 33]
func([33.3, 33.3, 33.3, 0.1], 100); // => [34, 33, 33, 0] 
func([13.25, 47.25, 11.25, 28.25], 100 ); // => [13, 48, 11, 28]
func( [25.5, 25.5, 25.5, 23.5], 100 ); // => [25, 25, 26, 24]

One last thing, I ran the function using the numbers originally given in the question to compare to the desired output

func([13.626332, 47.989636, 9.596008, 28.788024], 100); // => [48, 29, 13, 10]

This was different to what the question wanted => [ 48, 29, 14, 9]. I couldn't understand this until I looked at the total margin of error

-------------------------------------------------
| original  | question | % diff | mine | % diff |
-------------------------------------------------
| 13.626332 | 14       | 2.74%  | 13   | 4.5%   |
| 47.989636 | 48       | 0.02%  | 48   | 0.02%  |
| 9.596008  | 9        | 6.2%   | 10   | 4.2%   |
| 28.788024 | 29       | 0.7%   | 29   | 0.7%   |
-------------------------------------------------
| Totals    | 100      | 9.66%  | 100  | 9.43%  |
-------------------------------------------------

Essentially, the result from my function actually introduces the least amount of error.

Fiddle here


I once wrote an unround tool, to find the minimal perturbation to a set of numbers to match a goal. It was a different problem, but one could in theory use a similar idea here. In this case, we have a set of choices.

Thus for the first element, we can either round it up to 14, or down to 13. The cost (in a binary integer programming sense) of doing so is less for the round up than the round down, because the round down requires we move that value a larger distance. Similarly, we can round each number up or down, so there are a total of 16 choices we must choose from.

  13.626332
  47.989636
   9.596008
+ 28.788024
-----------
 100.000000

I'd normally solve the general problem in MATLAB, here using bintprog, a binary integer programming tool, but there are only a few choices to be tested, so it is easy enough with simple loops to test out each of the 16 alternatives. For example, suppose we were to round this set as:

 Original      Rounded   Absolute error
   13.626           13          0.62633
    47.99           48          0.01036
    9.596           10          0.40399
 + 28.788           29          0.21198
---------------------------------------
  100.000          100          1.25266

The total absolute error made is 1.25266. It can be reduced slightly by the following alternative rounding:

 Original      Rounded   Absolute error
   13.626           14          0.37367
    47.99           48          0.01036
    9.596            9          0.59601
 + 28.788           29          0.21198
---------------------------------------
  100.000          100          1.19202

In fact, this will be the optimal solution in terms of the absolute error. Of course, if there were 20 terms, the search space will be of size 2^20 = 1048576. For 30 or 40 terms, that space will be of significant size. In that case, you would need to use a tool that can efficiently search the space, perhaps using a branch and bound scheme.


Probably the "best" way to do this (quoted since "best" is a subjective term) is to keep a running (non-integral) tally of where you are, and round that value.

Then use that along with the history to work out what value should be used. For example, using the values you gave:

Value      CumulValue  CumulRounded  PrevBaseline  Need
---------  ----------  ------------  ------------  ----
                                  0
13.626332   13.626332            14             0    14 ( 14 -  0)
47.989636   61.615968            62            14    48 ( 62 - 14)
 9.596008   71.211976            71            62     9 ( 71 - 62)
28.788024  100.000000           100            71    29 (100 - 71)
                                                    ---
                                                    100

At each stage, you don't round the number itself. Instead, you round the accumulated value and work out the best integer that reaches that value from the previous baseline - that baseline is the cumulative value (rounded) of the previous row.

This works because you're not losing information at each stage but rather using the information more intelligently. The 'correct' rounded values are in the final column and you can see that they sum to 100.

You can see the difference between this and blindly rounding each value, in the third value above. While 9.596008 would normally round up to 10, the accumulated 71.211976 correctly rounds down to 71 - this means that only 9 is needed to add to the previous baseline of 62.


This also works for "problematic" sequence like three roughly-1/3 values, where one of them should be rounded up:

Value      CumulValue  CumulRounded  PrevBaseline  Need
---------  ----------  ------------  ------------  ----
                                  0
33.333333   33.333333            33             0    33 ( 33 -  0)
33.333333   66.666666            67            33    34 ( 67 - 33)
33.333333   99.999999           100            67    33 (100 - 67)
                                                    ---
                                                    100

You could try keeping track of your error due to rounding, and then rounding against the grain if the accumulated error is greater than the fractional portion of the current number.

13.62 -> 14 (+.38)
47.98 -> 48 (+.02 (+.40 total))
 9.59 -> 10 (+.41 (+.81 total))
28.78 -> 28 (round down because .81 > .78)
------------
        100

Not sure if this would work in general, but it seems to work similar if the order is reversed:

28.78 -> 29 (+.22)
 9.59 ->  9 (-.37; rounded down because .59 > .22)
47.98 -> 48 (-.35)
13.62 -> 14 (+.03)
------------
        100

I'm sure there are edge cases where this might break down, but any approach is going to be at least somewhat arbitrary since you're basically modifying your input data.


check if this is valid or not as far as my test cases I am able to get this working.

let's say number is k;

  1. sort percentage by descending oder.
  2. iterate over each percentage from descending order.
  3. calculate percentage of k for first percentage take Math.Ceil of output.
  4. next k = k-1
  5. iterate over till all percentage is consumed.

For those having the percentages in a pandas Series, here is my implemantation of the Largest remainder method (as in Varun Vohra's answer), where you can even select the decimals to which you want to round.

import numpy as np

def largestRemainderMethod(pd_series, decimals=1):

    floor_series = ((10**decimals * pd_series).astype(np.int)).apply(np.floor)
    diff = 100 * (10**decimals) - floor_series.sum().astype(np.int)
    series_decimals = pd_series - floor_series / (10**decimals)
    series_sorted_by_decimals = series_decimals.sort_values(ascending=False)

    for i in range(0, len(series_sorted_by_decimals)):
        if i < diff:
            series_sorted_by_decimals.iloc[[i]] = 1
        else:
            series_sorted_by_decimals.iloc[[i]] = 0

    out_series = ((floor_series + series_sorted_by_decimals) / (10**decimals)).sort_values(ascending=False)

    return out_series

The goal of rounding is to generate the least amount of error. When you're rounding a single value, that process is simple and straightforward and most people understand it easily. When you're rounding multiple numbers at the same time, the process gets trickier - you must define how the errors are going to combine, i.e. what must be minimized.

The well-voted answer by Varun Vohra minimizes the sum of the absolute errors, and it's very simple to implement. However there are edge cases it does not handle - what should be the result of rounding 24.25, 23.25, 27.25, 25.25? One of those needs to be rounded up instead of down. You would probably just arbitrarily pick the first or last one in the list.

Perhaps it's better to use the relative error instead of the absolute error. Rounding 23.25 up to 24 changes it by 3.2% while rounding 27.25 up to 28 only changes it by 2.8%. Now there's a clear winner.

It's possible to tweak this even further. One common technique is to square each error, so that large errors count disproportionately more than small ones. I'd also use a non-linear divisor to get the relative error - it doesn't seem right that an error at 1% is 99 times more important than an error at 99%. In the code below I've used the square root.

The complete algorithm is as follows:

  1. Sum the percentages after rounding them all down, and subtract from 100. This tells you how many of those percentages must be rounded up instead.
  2. Generate two error scores for each percentage, one when when rounded down and one when rounded up. Take the difference between the two.
  3. Sort the error differences produced above.
  4. For the number of percentages that need to be rounded up, take an item from the sorted list and increment the rounded down percentage by 1.

You may still have more than one combination with the same error sum, for example 33.3333333, 33.3333333, 33.3333333. This is unavoidable, and the result will be completely arbitrary. The code I give below prefers to round up the values on the left.

Putting it all together in Python looks like this.

def error_gen(actual, rounded):
    divisor = sqrt(1.0 if actual < 1.0 else actual)
    return abs(rounded - actual) ** 2 / divisor

def round_to_100(percents):
    if not isclose(sum(percents), 100):
        raise ValueError
    n = len(percents)
    rounded = [int(x) for x in percents]
    up_count = 100 - sum(rounded)
    errors = [(error_gen(percents[i], rounded[i] + 1) - error_gen(percents[i], rounded[i]), i) for i in range(n)]
    rank = sorted(errors)
    for i in range(up_count):
        rounded[rank[i][1]] += 1
    return rounded

>>> round_to_100([13.626332, 47.989636, 9.596008, 28.788024])
[14, 48, 9, 29]
>>> round_to_100([33.3333333, 33.3333333, 33.3333333])
[34, 33, 33]
>>> round_to_100([24.25, 23.25, 27.25, 25.25])
[24, 23, 28, 25]
>>> round_to_100([1.25, 2.25, 3.25, 4.25, 89.0])
[1, 2, 3, 4, 90]

As you can see with that last example, this algorithm is still capable of delivering non-intuitive results. Even though 89.0 needs no rounding whatsoever, one of the values in that list needed to be rounded up; the lowest relative error results from rounding up that large value rather than the much smaller alternatives.

This answer originally advocated going through every possible combination of round up/round down, but as pointed out in the comments a simpler method works better. The algorithm and code reflect that simplification.


Here's a simpler Python implementation of @varun-vohra answer:

def apportion_pcts(pcts, total):
    proportions = [total * (pct / 100) for pct in pcts]
    apportions = [math.floor(p) for p in proportions]
    remainder = total - sum(apportions)
    remainders = [(i, p - math.floor(p)) for (i, p) in enumerate(proportions)]
    remainders.sort(key=operator.itemgetter(1), reverse=True)
    for (i, _) in itertools.cycle(remainders):
        if remainder == 0:
            break
        else:
            apportions[i] += 1
            remainder -= 1
    return apportions

You need math, itertools, operator.


If you are rounding it there is no good way to get it exactly the same in all case.

You can take the decimal part of the N percentages you have (in the example you gave it is 4).

Add the decimal parts. In your example you have total of fractional part = 3.

Ceil the 3 numbers with highest fractions and floor the rest.

(Sorry for the edits)


If you really must round them, there are already very good suggestions here (largest remainder, least relative error, and so on).

There is also already one good reason not to round (you'll get at least one number that "looks better" but is "wrong"), and how to solve that (warn your readers) and that is what I do.

Let me add on the "wrong" number part.

Suppose you have three events/entitys/... with some percentages that you approximate as:

DAY 1
who |  real | app
----|-------|------
  A | 33.34 |  34
  B | 33.33 |  33
  C | 33.33 |  33

Later on the values change slightly, to

DAY 2
who |  real | app
----|-------|------
  A | 33.35 |  33
  B | 33.36 |  34
  C | 33.29 |  33

The first table has the already mentioned problem of having a "wrong" number: 33.34 is closer to 33 than to 34.

But now you have a bigger error. Comparing day 2 to day 1, the real percentage value for A increased, by 0.01%, but the approximation shows a decrease by 1%.

That is a qualitative error, probably quite worse that the initial quantitative error.

One could devise a approximation for the whole set but, you may have to publish data on day one, thus you'll not know about day two. So, unless you really, really, must approximate, you probably better not.


I wrote a C# version rounding helper, the algorithm is same as Varun Vohra's answer, hope it helps.

public static List<decimal> GetPerfectRounding(List<decimal> original,
    decimal forceSum, int decimals)
{
    var rounded = original.Select(x => Math.Round(x, decimals)).ToList();
    Debug.Assert(Math.Round(forceSum, decimals) == forceSum);
    var delta = forceSum - rounded.Sum();
    if (delta == 0) return rounded;
    var deltaUnit = Convert.ToDecimal(Math.Pow(0.1, decimals)) * Math.Sign(delta);

    List<int> applyDeltaSequence; 
    if (delta < 0)
    {
        applyDeltaSequence = original
            .Zip(Enumerable.Range(0, int.MaxValue), (x, index) => new { x, index })
            .OrderBy(a => original[a.index] - rounded[a.index])
            .ThenByDescending(a => a.index)
            .Select(a => a.index).ToList();
    }
    else
    {
        applyDeltaSequence = original
            .Zip(Enumerable.Range(0, int.MaxValue), (x, index) => new { x, index })
            .OrderByDescending(a => original[a.index] - rounded[a.index])
            .Select(a => a.index).ToList();
    }

    Enumerable.Repeat(applyDeltaSequence, int.MaxValue)
        .SelectMany(x => x)
        .Take(Convert.ToInt32(delta/deltaUnit))
        .ForEach(index => rounded[index] += deltaUnit);

    return rounded;
}

It pass the following Unit test:

[TestMethod]
public void TestPerfectRounding()
{
    CollectionAssert.AreEqual(Utils.GetPerfectRounding(
        new List<decimal> {3.333m, 3.334m, 3.333m}, 10, 2),
        new List<decimal> {3.33m, 3.34m, 3.33m});

    CollectionAssert.AreEqual(Utils.GetPerfectRounding(
        new List<decimal> {3.33m, 3.34m, 3.33m}, 10, 1),
        new List<decimal> {3.3m, 3.4m, 3.3m});

    CollectionAssert.AreEqual(Utils.GetPerfectRounding(
        new List<decimal> {3.333m, 3.334m, 3.333m}, 10, 1),
        new List<decimal> {3.3m, 3.4m, 3.3m});


    CollectionAssert.AreEqual(Utils.GetPerfectRounding(
        new List<decimal> { 13.626332m, 47.989636m, 9.596008m, 28.788024m }, 100, 0),
        new List<decimal> {14, 48, 9, 29});
    CollectionAssert.AreEqual(Utils.GetPerfectRounding(
        new List<decimal> { 16.666m, 16.666m, 16.666m, 16.666m, 16.666m, 16.666m }, 100, 0),
        new List<decimal> { 17, 17, 17, 17, 16, 16 });
    CollectionAssert.AreEqual(Utils.GetPerfectRounding(
        new List<decimal> { 33.333m, 33.333m, 33.333m }, 100, 0),
        new List<decimal> { 34, 33, 33 });
    CollectionAssert.AreEqual(Utils.GetPerfectRounding(
        new List<decimal> { 33.3m, 33.3m, 33.3m, 0.1m }, 100, 0),
        new List<decimal> { 34, 33, 33, 0 });
}

I'm not sure what level of accuracy you need, but what I would do is simply add 1 the first n numbers, n being the ceil of the total sum of decimals. In this case that is 3, so I would add 1 to the first 3 items and floor the rest. Of course this is not super accurate, some numbers might be rounded up or down when it shouldn't but it works okay and will always result in 100%.

So [ 13.626332, 47.989636, 9.596008, 28.788024 ] would be [14, 48, 10, 28] because Math.ceil(.626332+.989636+.596008+.788024) == 3

function evenRound( arr ) {
  var decimal = -~arr.map(function( a ){ return a % 1 })
    .reduce(function( a,b ){ return a + b }); // Ceil of total sum of decimals
  for ( var i = 0; i < decimal; ++i ) {
    arr[ i ] = ++arr[ i ]; // compensate error by adding 1 the the first n items
  }
  return arr.map(function( a ){ return ~~a }); // floor all other numbers
}

var nums = evenRound( [ 13.626332, 47.989636, 9.596008, 28.788024 ] );
var total = nums.reduce(function( a,b ){ return a + b }); //=> 100

You can always inform users that the numbers are rounded and may not be super-accurate...


DO NOT sum the rounded numbers. You're going to have inaccurate results. The total could be off significantly depending on the number of terms and the distribution of fractional parts.

Display the rounded numbers but sum the actual values. Depending on how you're presenting the numbers, the actual way to do that would vary. That way you get

 14
 48
 10
 29
 __
100

Any way you go you're going to have discrepancy. There's no way in your example to show numbers that add up to 100 without "rounding" one value the wrong way (least error would be changing 9.596 to 9)

EDIT

You need to choose between one of the following:

  1. Accuracy of the items
  2. Accuracy of the sum (if you're summing rounded values)
  3. Consistency between the rounded items and the rounded sum)

Most of the time when dealing with percentages #3 is the best option because it's more obvious when the total equals 101% than when the individual items don't total to 100, and you keep the individual items accurate. "Rounding" 9.596 to 9 is inaccurate in my opinion.

To explain this I sometimes add a footnote that explains that the individual values are rounded and may not total 100% - anyone that understands rounding should be able to understand that explanation.


Here's a Ruby gem that implements the Largest Remainder method: https://github.com/jethroo/lare_round

To use:

a =  Array.new(3){ BigDecimal('0.3334') }
# => [#<BigDecimal:887b6c8,'0.3334E0',9(18)>, #<BigDecimal:887b600,'0.3334E0',9(18)>, #<BigDecimal:887b4c0,'0.3334E0',9(18)>]
a = LareRound.round(a,2)
# => [#<BigDecimal:8867330,'0.34E0',9(36)>, #<BigDecimal:8867290,'0.33E0',9(36)>, #<BigDecimal:88671f0,'0.33E0',9(36)>]
a.reduce(:+).to_f
# => 1.0

There are many ways to do just this, provided you are not concerned about reliance on the original decimal data.

The first and perhaps most popular method would be the Largest Remainder Method

Which is basically:

  1. Rounding everything down
  2. Getting the difference in sum and 100
  3. Distributing the difference by adding 1 to items in decreasing order of their decimal parts

In your case, it would go like this:

13.626332%
47.989636%
 9.596008%
28.788024%

If you take the integer parts, you get

13
47
 9
28

which adds up to 97, and you want to add three more. Now, you look at the decimal parts, which are

.626332%
.989636%
.596008%
.788024%

and take the largest ones until the total reaches 100. So you would get:

14
48
 9
29

Alternatively, you can simply choose to show one decimal place instead of integer values. So the numbers would be 48.3 and 23.9 etc. This would drop the variance from 100 by a lot.


Note: the selected answer is changing the array order which is not preferred, here I provide more different variations that achieving the same result and keeping the array in order

Discussion

given [98.88, .56, .56] how do you want to round it? you have four option

1- round things up and subtract what is added from the rest of the numbers, so the result becomes [98, 1, 1]

this could be a good answer, but what if we have [97.5, .5, .5, .5, .5, .5]? then you need to round it up to [95, 1, 1, 1, 1, 1]

do you see how it goes? if you add more 0-like numbers, you will lose more value from the rest of your numbers. this could be very troublesome when you have a big array of zero-like number like [40, .5, .5 , ... , .5]. when you round up this, you could end up with an array of ones: [1, 1, .... , 1]

so round-up isn't a good option.

2- you round down the numbers. so [98.88, .56, .56] becomes [98, 0, 0], then you are 2 less than 100. you ignore anything that is already 0, then add up the difference to the biggest numbers. so bigger numbers will get more.

3- same as previous, round down numbers, but you sort descending based on the decimals, divide up the diff based on the decimal, so biggest decimal will get the diff.

4- you round up, but you add what you added to the next number. so like a wave what you have added will be redirected to the end of your array. so [98.88, .56, .56] becomes [99, 0, 1]

none of these are ideal, so be mindful that your data is going to lose its shape.

here I provide a code for cases 2 and 3 (as case No.1 is not practical when you have a lot of zero-like numbers). it's modern Js and doesn't need any library to use

2nd case

const v1 = [13.626332, 47.989636, 9.596008, 28.788024];// => [ 14, 48, 9, 29 ]
const v2 = [16.666, 16.666, 16.666, 16.666, 16.666, 16.666] // => [ 17, 17, 17, 17, 16, 16 ] 
const v3 = [33.333, 33.333, 33.333] // => [ 34, 33, 33 ]
const v4 = [33.3, 33.3, 33.3, 0.1] // => [ 34, 33, 33, 0 ]
const v5 = [98.88, .56, .56] // =>[ 100, 0, 0 ]
const v6 = [97.5, .5, .5, .5, .5, .5] // => [ 100, 0, 0, 0, 0, 0 ]

const normalizePercentageByNumber = (input) => {
    const rounded: number[] = input.map(x => Math.floor(x));
    const afterRoundSum = rounded.reduce((pre, curr) => pre + curr, 0);
    const countMutableItems = rounded.filter(x => x >=1).length;
    const errorRate = 100 - afterRoundSum;
    
    const deductPortion = Math.ceil(errorRate / countMutableItems);
    
    const biggest = [...rounded].sort((a, b) => b - a).slice(0, Math.min(Math.abs(errorRate), countMutableItems));
    const result = rounded.map(x => {
        const indexOfX = biggest.indexOf(x);
        if (indexOfX >= 0) {
            x += deductPortion;
            console.log(biggest)
            biggest.splice(indexOfX, 1);
            return x;
        }
        return x;
    });
    return result;
}

3rd case

const normalizePercentageByDecimal = (input: number[]) => {

    const rounded= input.map((x, i) => ({number: Math.floor(x), decimal: x%1, index: i }));

    const decimalSorted= [...rounded].sort((a,b)=> b.decimal-a.decimal);
    
    const sum = rounded.reduce((pre, curr)=> pre + curr.number, 0) ;
    const error= 100-sum;
    
    for (let i = 0; i < error; i++) {
        const element = decimalSorted[i];
        element.number++;
    }

    const result= [...decimalSorted].sort((a,b)=> a.index-b.index);
    
    return result.map(x=> x.number);
}

4th case

you just need to calculate how much extra air added or deducted to your numbers on each roundup and, add or subtract it again in the next item.

const v1 = [13.626332, 47.989636, 9.596008, 28.788024];// => [14, 48, 10, 28 ]
const v2 = [16.666, 16.666, 16.666, 16.666, 16.666, 16.666] // => [17, 16, 17, 16, 17, 17]
const v3 = [33.333, 33.333, 33.333] // => [33, 34, 33]
const v4 = [33.3, 33.3, 33.3, 0.1] // => [33, 34, 33, 0]

const normalizePercentageByWave= v4.reduce((pre, curr, i, arr) => {

    let number = Math.round(curr + pre.decimal);
    let total = pre.total + number;

    const decimal = curr - number;

    if (i == arr.length - 1 && total < 100) {
        const diff = 100 - total;
        total += diff;
        number += diff;
    }

    return { total, numbers: [...pre.numbers, number], decimal };

}, { total: 0, numbers: [], decimal: 0 });

Examples related to algorithm

How can I tell if an algorithm is efficient? Find the smallest positive integer that does not occur in a given sequence Efficiently getting all divisors of a given number Peak signal detection in realtime timeseries data What is the optimal algorithm for the game 2048? How can I sort a std::map first by value, then by key? Finding square root without using sqrt function? Fastest way to flatten / un-flatten nested JSON objects Mergesort with Python Find common substring between two strings

Examples related to math

How to do perspective fixing? How to pad a string with leading zeros in Python 3 How can I use "e" (Euler's number) and power operation in python 2.7 numpy max vs amax vs maximum Efficiently getting all divisors of a given number Using atan2 to find angle between two vectors How to calculate percentage when old value is ZERO Finding square root without using sqrt function? Exponentiation in Python - should I prefer ** operator instead of math.pow and math.sqrt? How do I get the total number of unique pairs of a set in the database?

Examples related to rounding

How to round a numpy array? How to pad a string with leading zeros in Python 3 Python - round up to the nearest ten How to round a Double to the nearest Int in swift? Using Math.round to round to one decimal place? How to round to 2 decimals with Python? Rounding to 2 decimal places in SQL Rounding to two decimal places in Python 2.7? Round a floating-point number down to the nearest integer? Rounding BigDecimal to *always* have two decimal places

Examples related to percentage

Calculate percentage Javascript Format number as percent in MS SQL Server how to calculate percentage in python How do I print the percent sign(%) in c MySQL Calculate Percentage Div Height in Percentage How to make rounded percentages add up to 100% How do I calculate the percentage of a number?