[python] Specifying and saving a figure with exact size in pixels

Comparison of different approaches

Here is a quick comparison of some of the approaches I've tried with images showing what the give.

Baseline example without trying to set the image dimensions

Just to have a comparison point:

base.py

#!/usr/bin/env python3

import sys

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

fig, ax = plt.subplots()
print('fig.dpi = {}'.format(fig.dpi))
print('fig.get_size_inches() = ' + str(fig.get_size_inches())
t = np.arange(-10., 10., 1.)
plt.plot(t, t, '.')
plt.plot(t, t**2, '.')
ax.text(0., 60., 'Hello', fontdict=dict(size=25))
plt.savefig('base.png', format='png')

run:

./base.py
identify base.png

outputs:

fig.dpi = 100.0
fig.get_size_inches() = [6.4 4.8]
base.png PNG 640x480 640x480+0+0 8-bit sRGB 13064B 0.000u 0:00.000

enter image description here

My best approach so far: plt.savefig(dpi=h/fig.get_size_inches()[1] height-only control

I think this is what I'll go with most of the time, as it is simple and scales:

get_size.py

#!/usr/bin/env python3

import sys

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

height = int(sys.argv[1])
fig, ax = plt.subplots()
t = np.arange(-10., 10., 1.)
plt.plot(t, t, '.')
plt.plot(t, t**2, '.')
ax.text(0., 60., 'Hello', fontdict=dict(size=25))
plt.savefig(
    'get_size.png',
    format='png',
    dpi=height/fig.get_size_inches()[1]
)

run:

./get_size.py 431

outputs:

get_size.png PNG 574x431 574x431+0+0 8-bit sRGB 10058B 0.000u 0:00.000

enter image description here

and

./get_size.py 1293

outputs:

main.png PNG 1724x1293 1724x1293+0+0 8-bit sRGB 46709B 0.000u 0:00.000

enter image description here

I tend to set just the height because I'm usually most concerned about how much vertical space the image is going to take up in the middle of my text.

plt.savefig(bbox_inches='tight' changes image size

I always feel that there is too much white space around images, and tended to add bbox_inches='tight' from: Removing white space around a saved image in matplotlib

However, that works by cropping the image, and you won't get the desired sizes with it.

Instead, this other approach proposed in the same question seems to work well:

plt.tight_layout(pad=1)
plt.savefig(...

which gives the exact desired height for height equals 431:

enter image description here

Fixed height, set_aspect, automatically sized width and small margins

Ermmm, set_aspect messes things up again and prevents plt.tight_layout from actually removing the margins...

Asked at: How to obtain a fixed height in pixels, fixed data x/y aspect ratio and automatically remove remove horizontal whitespace margin in Matplotlib?

plt.savefig(dpi=h/fig.get_size_inches()[1] + width control

If you really need a specific width in addition to height, this seems to work OK:

width.py

#!/usr/bin/env python3

import sys

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

h = int(sys.argv[1])
w = int(sys.argv[2])
fig, ax = plt.subplots()
wi, hi = fig.get_size_inches()
fig.set_size_inches(hi*(w/h), hi)
t = np.arange(-10., 10., 1.)
plt.plot(t, t, '.')
plt.plot(t, t**2, '.')
ax.text(0., 60., 'Hello', fontdict=dict(size=25))
plt.savefig(
    'width.png',
    format='png',
    dpi=h/hi
)

run:

./width.py 431 869

output:

width.png PNG 869x431 869x431+0+0 8-bit sRGB 10965B 0.000u 0:00.000

enter image description here

and for a small width:

./width.py 431 869

output:

width.png PNG 211x431 211x431+0+0 8-bit sRGB 6949B 0.000u 0:00.000

enter image description here

So it does seem that fonts are scaling correctly, we just get some trouble for very small widths with labels getting cut off, e.g. the 100 on the top left.

I managed to work around those with Removing white space around a saved image in matplotlib

plt.tight_layout(pad=1)

which gives:

width.png PNG 211x431 211x431+0+0 8-bit sRGB 7134B 0.000u 0:00.000

enter image description here

From this, we also see that tight_layout removes a lot of the empty space at the top of the image, so I just generally always use it.

Fixed magic base height, dpi on fig.set_size_inches and plt.savefig(dpi= scaling

I believe that this is equivalent to the approach mentioned at: https://stackoverflow.com/a/13714720/895245

magic.py

#!/usr/bin/env python3

import sys

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

magic_height = 300
w = int(sys.argv[1])
h = int(sys.argv[2])
dpi = 80
fig, ax = plt.subplots(dpi=dpi)
fig.set_size_inches(magic_height*w/(h*dpi), magic_height/dpi)
t = np.arange(-10., 10., 1.)
plt.plot(t, t, '.')
plt.plot(t, t**2, '.')
ax.text(0., 60., 'Hello', fontdict=dict(size=25))
plt.savefig(
    'magic.png',
    format='png',
    dpi=h/magic_height*dpi,
)

run:

./magic.py 431 231

outputs:

magic.png PNG 431x231 431x231+0+0 8-bit sRGB 7923B 0.000u 0:00.000

enter image description here

And to see if it scales nicely:

./magic.py 1291 693

outputs:

magic.png PNG 1291x693 1291x693+0+0 8-bit sRGB 25013B 0.000u 0:00.000

enter image description here

So we see that this approach also does work well. The only problem I have with it is that you have to set that magic_height parameter or equivalent.

Fixed DPI + set_size_inches

This approach gave a slightly wrong pixel size, and it makes it is hard to scale everything seamlessly.

set_size_inches.py

#!/usr/bin/env python3

import sys

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

w = int(sys.argv[1])
h = int(sys.argv[2])
fig, ax = plt.subplots()
fig.set_size_inches(w/fig.dpi, h/fig.dpi)
t = np.arange(-10., 10., 1.)
plt.plot(t, t, '.')
plt.plot(t, t**2, '.')
ax.text(
    0,
    60.,
    'Hello',
    # Keep font size fixed independently of DPI.
    # https://stackoverflow.com/questions/39395616/matplotlib-change-figsize-but-keep-fontsize-constant
    fontdict=dict(size=10*h/fig.dpi),
)
plt.savefig(
    'set_size_inches.png',
    format='png',
)

run:

./set_size_inches.py 431 231

outputs:

set_size_inches.png PNG 430x231 430x231+0+0 8-bit sRGB 8078B 0.000u 0:00.000

so the height is slightly off, and the image:

enter image description here

The pixel sizes are also correct if I make it 3 times larger:

./set_size_inches.py 1291 693

outputs:

set_size_inches.png PNG 1291x693 1291x693+0+0 8-bit sRGB 19798B 0.000u 0:00.000

enter image description here

We understand from this however that for this approach to scale nicely, you need to make every DPI-dependant setting proportional to the size in inches.

In the previous example, we only made the "Hello" text proportional, and it did retain its height between 60 and 80 as we'd expect. But everything for which we didn't do that, looks tiny, including:

  • line width of axes
  • tick labels
  • point markers

SVG

I could not find how to set it for SVG images, my approaches only worked for PNG e.g.:

get_size_svg.py

#!/usr/bin/env python3

import sys

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

height = int(sys.argv[1])
fig, ax = plt.subplots()
t = np.arange(-10., 10., 1.)
plt.plot(t, t, '.')
plt.plot(t, t**2, '.')
ax.text(0., 60., 'Hello', fontdict=dict(size=25))
plt.savefig(
    'get_size_svg.svg',
    format='svg',
    dpi=height/fig.get_size_inches()[1]
)

run:

./get_size_svg.py 431

and the generated output contains:

<svg height="345.6pt" version="1.1" viewBox="0 0 460.8 345.6" width="460.8pt"

and identify says:

get_size_svg.svg SVG 614x461 614x461+0+0 8-bit sRGB 17094B 0.000u 0:00.000

and if I open it in Chromium 86 the browser debug tools mouse image hover confirm that height as 460.79.

But of course, since SVG is a vector format, everything should in theory scale, so you can just convert to any fixed sized format without loss of resolution, e.g.:

inkscape -h 431 get_size_svg.svg -b FFF -e get_size_svg.png

gives the exact height:

TODO regenerate image, messed up the upload somehow.

I use Inkscape instead of Imagemagick's convert here because you need to mess with -density as well to get sharp SVG resizes with ImageMagick:

And setting <img height="" on the HTML should also just work for the browser.

Tested on matplotlib==3.2.2.

Examples related to python

programming a servo thru a barometer Is there a way to view two blocks of code from the same file simultaneously in Sublime Text? python variable NameError Why my regexp for hyphenated words doesn't work? Comparing a variable with a string python not working when redirecting from bash script is it possible to add colors to python output? Get Public URL for File - Google Cloud Storage - App Engine (Python) Real time face detection OpenCV, Python xlrd.biffh.XLRDError: Excel xlsx file; not supported Could not load dynamic library 'cudart64_101.dll' on tensorflow CPU-only installation

Examples related to matplotlib

"UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure." when plotting figure with pyplot on Pycharm How to increase image size of pandas.DataFrame.plot in jupyter notebook? How to create a stacked bar chart for my DataFrame using seaborn? How to display multiple images in one figure correctly? Edit seaborn legend How to hide axes and gridlines in Matplotlib (python) How to set x axis values in matplotlib python? How to specify legend position in matplotlib in graph coordinates Python "TypeError: unhashable type: 'slice'" for encoding categorical data Seaborn Barplot - Displaying Values

Examples related to scipy

Reading images in python Numpy Resize/Rescale Image How to get the indices list of all NaN value in numpy array? ImportError: cannot import name NUMPY_MKL numpy.where() detailed, step-by-step explanation / examples Scikit-learn train_test_split with indices Matplotlib: Specify format of floats for tick labels Installing NumPy and SciPy on 64-bit Windows (with Pip) Can't install Scipy through pip Plotting a fast Fourier transform in Python