Edit 2018-02-06: revision based on this comment
Edit: forgot to mention that this works on Python 2.7.x
There's multiprocesing.pool, and the following sample illustrates how to use one of them:
from multiprocessing.pool import ThreadPool as Pool
# from multiprocessing import Pool
pool_size = 5 # your "parallelness"
# define worker function before a Pool is instantiated
def worker(item):
try:
api.my_operation(item)
except:
print('error with item')
pool = Pool(pool_size)
for item in items:
pool.apply_async(worker, (item,))
pool.close()
pool.join()
Now if you indeed identify that your process is CPU bound as @abarnert mentioned, change ThreadPool to the process pool implementation (commented under ThreadPool import). You can find more details here: http://docs.python.org/2/library/multiprocessing.html#using-a-pool-of-workers