[python] Fastest way to compute entropy in Python

Uniformly distributed data (high entropy):

s=range(0,256)

Shannon entropy calculation step by step:

import collections
import math

# calculate probability for each byte as number of occurrences / array length
probabilities = [n_x/len(s) for x,n_x in collections.Counter(s).items()]
# [0.00390625, 0.00390625, 0.00390625, ...]

# calculate per-character entropy fractions
e_x = [-p_x*math.log(p_x,2) for p_x in probabilities]
# [0.03125, 0.03125, 0.03125, ...]

# sum fractions to obtain Shannon entropy
entropy = sum(e_x)
>>> entropy 
8.0

One-liner (assuming import collections):

def H(s): return sum([-p_x*math.log(p_x,2) for p_x in [n_x/len(s) for x,n_x in collections.Counter(s).items()]])

A proper function:

import collections
import math

def H(s):
    probabilities = [n_x/len(s) for x,n_x in collections.Counter(s).items()]
    e_x = [-p_x*math.log(p_x,2) for p_x in probabilities]    
    return sum(e_x)

Test cases - English text taken from CyberChef entropy estimator:

>>> H(range(0,256))
8.0
>>> H(range(0,64))
6.0
>>> H(range(0,128))
7.0
>>> H([0,1])
1.0
>>> H('Standard English text usually falls somewhere between 3.5 and 5')
4.228788210509104