You can use groupby
, assuming you have an integer enumerated index:
import math
df = pd.DataFrame(dict(sample=np.arange(99)))
rows_per_subframe = math.ceil(len(df) / 4.)
subframes = [i[1] for i in df.groupby(np.arange(len(df))//rows_per_subframe)]
Note: groupby
returns a tuple in which the 2nd element is the dataframe, thus the slightly complicated extraction.
>>> len(subframes), [len(i) for i in subframes]
(4, [25, 25, 25, 24])