[python] Pandas "Can only compare identically-labeled DataFrame objects" error

When you compare two DataFrames, you must ensure that the number of records in the first DataFrame matches with the number of records in the second DataFrame. In our example, each of the two DataFrames had 4 records, with 4 products and 4 prices.

If, for example, one of the DataFrames had 5 products, while the other DataFrame had 4 products, and you tried to run the comparison, you would get the following error:

ValueError: Can only compare identically-labeled Series objects

this should work

import pandas as pd
import numpy as np

firstProductSet = {'Product1': ['Computer','Phone','Printer','Desk'],
                   'Price1': [1200,800,200,350]
                   }
df1 = pd.DataFrame(firstProductSet,columns= ['Product1', 'Price1'])


secondProductSet = {'Product2': ['Computer','Phone','Printer','Desk'],
                    'Price2': [900,800,300,350]
                    }
df2 = pd.DataFrame(secondProductSet,columns= ['Product2', 'Price2'])


df1['Price2'] = df2['Price2'] #add the Price2 column from df2 to df1

df1['pricesMatch?'] = np.where(df1['Price1'] == df2['Price2'], 'True', 'False')  #create new column in df1 to check if prices match
df1['priceDiff?'] = np.where(df1['Price1'] == df2['Price2'], 0, df1['Price1'] - df2['Price2']) #create new column in df1 for price diff 
print (df1)

example from https://datatofish.com/compare-values-dataframes/