Another possible solution, in case the column has not only strings but numbers too, is to use astype(str).str.lower()
or to_string(na_rep='')
because otherwise, given that a number is not a string, when lowered it will return NaN
, therefore:
import pandas as pd
import numpy as np
df=pd.DataFrame(['ONE','Two', np.nan,2],columns=['x'])
xSecureLower = df['x'].to_string(na_rep='').lower()
xLower = df['x'].str.lower()
then we have:
>>> xSecureLower
0 one
1 two
2
3 2
Name: x, dtype: object
and not
>>> xLower
0 one
1 two
2 NaN
3 NaN
Name: x, dtype: object
edit:
if you don't want to lose the NaNs, then using map will be better, (from @wojciech-walczak, and @cs95 comment) it will look something like this
xSecureLower = df['x'].map(lambda x: x.lower() if isinstance(x,str) else x)