[perl] How do you round a floating point number in Perl?

How can I round a decimal number (floating point) to the nearest integer?

e.g.

1.2 = 1
1.7 = 2

This question is related to perl floating-point rounding

The answer is


If you decide to use printf or sprintf, note that they use the Round half to even method.

foreach my $i ( 0.5, 1.5, 2.5, 3.5 ) {
    printf "$i -> %.0f\n", $i;
}
__END__
0.5 -> 0
1.5 -> 2
2.5 -> 2
3.5 -> 4

You can either use a module like Math::Round:

use Math::Round;
my $rounded = round( $float );

Or you can do it the crude way:

my $rounded = sprintf "%.0f", $float;

My solution for sprintf

if ($value =~ m/\d\..*5$/){
    $format =~ /.*(\d)f$/;
    if (defined $1){
       my $coef = "0." . "0" x $1 . "05";    
            $value = $value + $coef;    
    }
}

$value = sprintf( "$format", $value );

If you are only concerned with getting an integer value out of a whole floating point number (i.e. 12347.9999 or 54321.0001), this approach (borrowed and modified from above) will do the trick:

my $rounded = floor($float + 0.1); 

You don't need any external module.

$x[0] = 1.2;
$x[1] = 1.7;

foreach (@x){
  print $_.' = '.( ( ($_-int($_))<0.5) ? int($_) : int($_)+1 );
  print "\n";
}

I may be missing your point, but I thought this was much cleaner way to do the same job.

What this does is to walk through every positive number in the element, print the number and rounded integer in the format you mentioned. The code concatenates respective rounded positive integer only based on the decimals. int($_) basically round-down the number so ($-int($)) captures the decimals. If the decimals are (by definition) strictly less than 0.5, round-down the number. If not, round-up by adding 1.


If you decide to use printf or sprintf, note that they use the Round half to even method.

foreach my $i ( 0.5, 1.5, 2.5, 3.5 ) {
    printf "$i -> %.0f\n", $i;
}
__END__
0.5 -> 0
1.5 -> 2
2.5 -> 2
3.5 -> 4

The following will round positive or negative numbers to a given decimal position:

sub round ()
{
    my ($x, $pow10) = @_;
    my $a = 10 ** $pow10;

    return (int($x / $a + (($x < 0) ? -0.5 : 0.5)) * $a);
}

loads of reading documentation on how to round numbers, many experts suggest writing your own rounding routines, as the 'canned' version provided with your language may not be precise enough, or contain errors. i imagine, however, they're talking many decimal places not just one, two, or three. with that in mind, here is my solution (although not EXACTLY as requested as my needs are to display dollars - the process is not much different, though).

sub asDollars($) {
  my ($cost) = @_;
  my $rv = 0;

  my $negative = 0;
  if ($cost =~ /^-/) {
    $negative = 1;
    $cost =~ s/^-//;
  }

  my @cost = split(/\./, $cost);

  # let's get the first 3 digits of $cost[1]
  my ($digit1, $digit2, $digit3) = split("", $cost[1]);
  # now, is $digit3 >= 5?
  # if yes, plus one to $digit2.
  # is $digit2 > 9 now?
  # if yes, $digit2 = 0, $digit1++
  # is $digit1 > 9 now??
  # if yes, $digit1 = 0, $cost[0]++
  if ($digit3 >= 5) {
    $digit3 = 0;
    $digit2++;
    if ($digit2 > 9) {
      $digit2 = 0;
      $digit1++;
      if ($digit1 > 9) {
        $digit1 = 0;
        $cost[0]++;
      }
    }
  }
  $cost[1] = $digit1 . $digit2;
  if ($digit1 ne "0" and $cost[1] < 10) { $cost[1] .= "0"; }

  # and pretty up the left of decimal
  if ($cost[0] > 999) { $cost[0] = commafied($cost[0]); }

  $rv = join(".", @cost);

  if ($negative) { $rv = "-" . $rv; }

  return $rv;
}

sub commafied($) {
  #*
  # to insert commas before every 3rd number (from the right)
  # positive or negative numbers
  #*
  my ($num) = @_; # the number to insert commas into!

  my $negative = 0;
  if ($num =~ /^-/) {
    $negative = 1;
    $num =~ s/^-//;
  }
  $num =~ s/^(0)*//; # strip LEADING zeros from given number!
  $num =~ s/0/-/g; # convert zeros to dashes because ... computers!

  if ($num) {
    my @digits = reverse split("", $num);
    $num = "";

    for (my $i = 0; $i < @digits; $i += 3) {
      $num .= $digits[$i];
      if ($digits[$i+1]) { $num .= $digits[$i+1]; }
      if ($digits[$i+2]) { $num .= $digits[$i+2]; }
      if ($i < (@digits - 3)) { $num .= ","; }
      if ($i >= @digits) { last; }
    }

    #$num =~ s/,$//;
    $num = join("", reverse split("", $num));
    $num =~ s/-/0/g;
  }

  if ($negative) { $num = "-" . $num; }

  return $num; # a number with commas added
  #usage: my $prettyNum = commafied(1234567890);
}

Following is a sample of five different ways to summate values. The first is a naive way to perform the summation (and fails). The second attempts to use sprintf(), but it too fails. The third uses sprintf() successfully while the final two (4th & 5th) use floor($value + 0.5).

 use strict;
 use warnings;
 use POSIX;

 my @values = (26.67,62.51,62.51,62.51,68.82,79.39,79.39);
 my $total1 = 0.00;
 my $total2 = 0;
 my $total3 = 0;
 my $total4 = 0.00;
 my $total5 = 0;
 my $value1;
 my $value2;
 my $value3;
 my $value4;
 my $value5;

 foreach $value1 (@values)
 {
      $value2 = $value1;
      $value3 = $value1;
      $value4 = $value1;
      $value5 = $value1;

      $total1 += $value1;

      $total2 += sprintf('%d', $value2 * 100);

      $value3 = sprintf('%1.2f', $value3);
      $value3 =~ s/\.//;
      $total3 += $value3;

      $total4 += $value4;

      $total5 += floor(($value5 * 100.0) + 0.5);
 }

 $total1 *= 100;
 $total4 = floor(($total4 * 100.0) + 0.5);

 print '$total1: '.sprintf('%011d', $total1)."\n";
 print '$total2: '.sprintf('%011d', $total2)."\n";
 print '$total3: '.sprintf('%011d', $total3)."\n";
 print '$total4: '.sprintf('%011d', $total4)."\n";
 print '$total5: '.sprintf('%011d', $total5)."\n";

 exit(0);

 #$total1: 00000044179
 #$total2: 00000044179
 #$total3: 00000044180
 #$total4: 00000044180
 #$total5: 00000044180

Note that floor($value + 0.5) can be replaced with int($value + 0.5) to remove the dependency on POSIX.


See perldoc/perlfaq:

Remember that int() merely truncates toward 0. For rounding to a certain number of digits, sprintf() or printf() is usually the easiest route.

 printf("%.3f",3.1415926535);
 # prints 3.142

The POSIX module (part of the standard Perl distribution) implements ceil(), floor(), and a number of other mathematical and trigonometric functions.

use POSIX;
$ceil  = ceil(3.5); # 4
$floor = floor(3.5); # 3

In 5.000 to 5.003 perls, trigonometry was done in the Math::Complex module.

With 5.004, the Math::Trig module (part of the standard Perl distribution) > implements the trigonometric functions.

Internally it uses the Math::Complex module and some functions can break out from the real axis into the complex plane, for example the inverse sine of 2.

Rounding in financial applications can have serious implications, and the rounding method used should be specified precisely. In these cases, it probably pays not to trust whichever system rounding is being used by Perl, but to instead implement the rounding function you need yourself.

To see why, notice how you'll still have an issue on half-way-point alternation:

for ($i = 0; $i < 1.01; $i += 0.05)
{
   printf "%.1f ",$i
}

0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0

Don't blame Perl. It's the same as in C. IEEE says we have to do this. Perl numbers whose absolute values are integers under 2**31 (on 32 bit machines) will work pretty much like mathematical integers. Other numbers are not guaranteed.


Following is a sample of five different ways to summate values. The first is a naive way to perform the summation (and fails). The second attempts to use sprintf(), but it too fails. The third uses sprintf() successfully while the final two (4th & 5th) use floor($value + 0.5).

 use strict;
 use warnings;
 use POSIX;

 my @values = (26.67,62.51,62.51,62.51,68.82,79.39,79.39);
 my $total1 = 0.00;
 my $total2 = 0;
 my $total3 = 0;
 my $total4 = 0.00;
 my $total5 = 0;
 my $value1;
 my $value2;
 my $value3;
 my $value4;
 my $value5;

 foreach $value1 (@values)
 {
      $value2 = $value1;
      $value3 = $value1;
      $value4 = $value1;
      $value5 = $value1;

      $total1 += $value1;

      $total2 += sprintf('%d', $value2 * 100);

      $value3 = sprintf('%1.2f', $value3);
      $value3 =~ s/\.//;
      $total3 += $value3;

      $total4 += $value4;

      $total5 += floor(($value5 * 100.0) + 0.5);
 }

 $total1 *= 100;
 $total4 = floor(($total4 * 100.0) + 0.5);

 print '$total1: '.sprintf('%011d', $total1)."\n";
 print '$total2: '.sprintf('%011d', $total2)."\n";
 print '$total3: '.sprintf('%011d', $total3)."\n";
 print '$total4: '.sprintf('%011d', $total4)."\n";
 print '$total5: '.sprintf('%011d', $total5)."\n";

 exit(0);

 #$total1: 00000044179
 #$total2: 00000044179
 #$total3: 00000044180
 #$total4: 00000044180
 #$total5: 00000044180

Note that floor($value + 0.5) can be replaced with int($value + 0.5) to remove the dependency on POSIX.


See perldoc/perlfaq:

Remember that int() merely truncates toward 0. For rounding to a certain number of digits, sprintf() or printf() is usually the easiest route.

 printf("%.3f",3.1415926535);
 # prints 3.142

The POSIX module (part of the standard Perl distribution) implements ceil(), floor(), and a number of other mathematical and trigonometric functions.

use POSIX;
$ceil  = ceil(3.5); # 4
$floor = floor(3.5); # 3

In 5.000 to 5.003 perls, trigonometry was done in the Math::Complex module.

With 5.004, the Math::Trig module (part of the standard Perl distribution) > implements the trigonometric functions.

Internally it uses the Math::Complex module and some functions can break out from the real axis into the complex plane, for example the inverse sine of 2.

Rounding in financial applications can have serious implications, and the rounding method used should be specified precisely. In these cases, it probably pays not to trust whichever system rounding is being used by Perl, but to instead implement the rounding function you need yourself.

To see why, notice how you'll still have an issue on half-way-point alternation:

for ($i = 0; $i < 1.01; $i += 0.05)
{
   printf "%.1f ",$i
}

0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0

Don't blame Perl. It's the same as in C. IEEE says we have to do this. Perl numbers whose absolute values are integers under 2**31 (on 32 bit machines) will work pretty much like mathematical integers. Other numbers are not guaranteed.


You can either use a module like Math::Round:

use Math::Round;
my $rounded = round( $float );

Or you can do it the crude way:

my $rounded = sprintf "%.0f", $float;

Negative numbers can add some quirks that people need to be aware of.

printf-style approaches give us correct numbers, but they can result in some odd displays. We have discovered that this method (in my opinion, stupidly) puts in a - sign whether or not it should or shouldn't. For example, -0.01 rounded to one decimal place returns a -0.0, rather than just 0. If you are going to do the printf style approach, and you know you want no decimal, use %d and not %f (when you need decimals, it's when the display gets wonky).

While it's correct and for math no big deal, for display it just looks weird showing something like "-0.0".

For the int method, negative numbers can change what you want as a result (though there are some arguments that can be made they are correct).

The int + 0.5 causes real issues with -negative numbers, unless you want it to work that way, but I imagine most people don't. -0.9 should probably round to -1, not 0. If you know that you want negative to be a ceiling rather than a floor then you can do it in one-liner, otherwise, you might want to use the int method with a minor modification (this obviously only works to get back whole numbers:

my $var = -9.1;
my $tmpRounded = int( abs($var) + 0.5));
my $finalRounded = $var >= 0 ? 0 + $tmpRounded : 0 - $tmpRounded;

cat table |
  perl -ne '/\d+\s+(\d+)\s+(\S+)/ && print "".**int**(log($1)/log(2))."\t$2\n";' 

My solution for sprintf

if ($value =~ m/\d\..*5$/){
    $format =~ /.*(\d)f$/;
    if (defined $1){
       my $coef = "0." . "0" x $1 . "05";    
            $value = $value + $coef;    
    }
}

$value = sprintf( "$format", $value );

loads of reading documentation on how to round numbers, many experts suggest writing your own rounding routines, as the 'canned' version provided with your language may not be precise enough, or contain errors. i imagine, however, they're talking many decimal places not just one, two, or three. with that in mind, here is my solution (although not EXACTLY as requested as my needs are to display dollars - the process is not much different, though).

sub asDollars($) {
  my ($cost) = @_;
  my $rv = 0;

  my $negative = 0;
  if ($cost =~ /^-/) {
    $negative = 1;
    $cost =~ s/^-//;
  }

  my @cost = split(/\./, $cost);

  # let's get the first 3 digits of $cost[1]
  my ($digit1, $digit2, $digit3) = split("", $cost[1]);
  # now, is $digit3 >= 5?
  # if yes, plus one to $digit2.
  # is $digit2 > 9 now?
  # if yes, $digit2 = 0, $digit1++
  # is $digit1 > 9 now??
  # if yes, $digit1 = 0, $cost[0]++
  if ($digit3 >= 5) {
    $digit3 = 0;
    $digit2++;
    if ($digit2 > 9) {
      $digit2 = 0;
      $digit1++;
      if ($digit1 > 9) {
        $digit1 = 0;
        $cost[0]++;
      }
    }
  }
  $cost[1] = $digit1 . $digit2;
  if ($digit1 ne "0" and $cost[1] < 10) { $cost[1] .= "0"; }

  # and pretty up the left of decimal
  if ($cost[0] > 999) { $cost[0] = commafied($cost[0]); }

  $rv = join(".", @cost);

  if ($negative) { $rv = "-" . $rv; }

  return $rv;
}

sub commafied($) {
  #*
  # to insert commas before every 3rd number (from the right)
  # positive or negative numbers
  #*
  my ($num) = @_; # the number to insert commas into!

  my $negative = 0;
  if ($num =~ /^-/) {
    $negative = 1;
    $num =~ s/^-//;
  }
  $num =~ s/^(0)*//; # strip LEADING zeros from given number!
  $num =~ s/0/-/g; # convert zeros to dashes because ... computers!

  if ($num) {
    my @digits = reverse split("", $num);
    $num = "";

    for (my $i = 0; $i < @digits; $i += 3) {
      $num .= $digits[$i];
      if ($digits[$i+1]) { $num .= $digits[$i+1]; }
      if ($digits[$i+2]) { $num .= $digits[$i+2]; }
      if ($i < (@digits - 3)) { $num .= ","; }
      if ($i >= @digits) { last; }
    }

    #$num =~ s/,$//;
    $num = join("", reverse split("", $num));
    $num =~ s/-/0/g;
  }

  if ($negative) { $num = "-" . $num; }

  return $num; # a number with commas added
  #usage: my $prettyNum = commafied(1234567890);
}

The following will round positive or negative numbers to a given decimal position:

sub round ()
{
    my ($x, $pow10) = @_;
    my $a = 10 ** $pow10;

    return (int($x / $a + (($x < 0) ? -0.5 : 0.5)) * $a);
}

Whilst not disagreeing with the complex answers about half-way marks and so on, for the more common (and possibly trivial) use-case:

my $rounded = int($float + 0.5);

UPDATE

If it's possible for your $float to be negative, the following variation will produce the correct result:

my $rounded = int($float + $float/abs($float*2 || 1));

With this calculation -1.4 is rounded to -1, and -1.6 to -2, and zero won't explode.


You can either use a module like Math::Round:

use Math::Round;
my $rounded = round( $float );

Or you can do it the crude way:

my $rounded = sprintf "%.0f", $float;

If you decide to use printf or sprintf, note that they use the Round half to even method.

foreach my $i ( 0.5, 1.5, 2.5, 3.5 ) {
    printf "$i -> %.0f\n", $i;
}
__END__
0.5 -> 0
1.5 -> 2
2.5 -> 2
3.5 -> 4

You don't need any external module.

$x[0] = 1.2;
$x[1] = 1.7;

foreach (@x){
  print $_.' = '.( ( ($_-int($_))<0.5) ? int($_) : int($_)+1 );
  print "\n";
}

I may be missing your point, but I thought this was much cleaner way to do the same job.

What this does is to walk through every positive number in the element, print the number and rounded integer in the format you mentioned. The code concatenates respective rounded positive integer only based on the decimals. int($_) basically round-down the number so ($-int($)) captures the decimals. If the decimals are (by definition) strictly less than 0.5, round-down the number. If not, round-up by adding 1.


If you decide to use printf or sprintf, note that they use the Round half to even method.

foreach my $i ( 0.5, 1.5, 2.5, 3.5 ) {
    printf "$i -> %.0f\n", $i;
}
__END__
0.5 -> 0
1.5 -> 2
2.5 -> 2
3.5 -> 4

If you are only concerned with getting an integer value out of a whole floating point number (i.e. 12347.9999 or 54321.0001), this approach (borrowed and modified from above) will do the trick:

my $rounded = floor($float + 0.1); 

cat table |
  perl -ne '/\d+\s+(\d+)\s+(\S+)/ && print "".**int**(log($1)/log(2))."\t$2\n";' 

Negative numbers can add some quirks that people need to be aware of.

printf-style approaches give us correct numbers, but they can result in some odd displays. We have discovered that this method (in my opinion, stupidly) puts in a - sign whether or not it should or shouldn't. For example, -0.01 rounded to one decimal place returns a -0.0, rather than just 0. If you are going to do the printf style approach, and you know you want no decimal, use %d and not %f (when you need decimals, it's when the display gets wonky).

While it's correct and for math no big deal, for display it just looks weird showing something like "-0.0".

For the int method, negative numbers can change what you want as a result (though there are some arguments that can be made they are correct).

The int + 0.5 causes real issues with -negative numbers, unless you want it to work that way, but I imagine most people don't. -0.9 should probably round to -1, not 0. If you know that you want negative to be a ceiling rather than a floor then you can do it in one-liner, otherwise, you might want to use the int method with a minor modification (this obviously only works to get back whole numbers:

my $var = -9.1;
my $tmpRounded = int( abs($var) + 0.5));
my $finalRounded = $var >= 0 ? 0 + $tmpRounded : 0 - $tmpRounded;

Whilst not disagreeing with the complex answers about half-way marks and so on, for the more common (and possibly trivial) use-case:

my $rounded = int($float + 0.5);

UPDATE

If it's possible for your $float to be negative, the following variation will produce the correct result:

my $rounded = int($float + $float/abs($float*2 || 1));

With this calculation -1.4 is rounded to -1, and -1.6 to -2, and zero won't explode.


See perldoc/perlfaq:

Remember that int() merely truncates toward 0. For rounding to a certain number of digits, sprintf() or printf() is usually the easiest route.

 printf("%.3f",3.1415926535);
 # prints 3.142

The POSIX module (part of the standard Perl distribution) implements ceil(), floor(), and a number of other mathematical and trigonometric functions.

use POSIX;
$ceil  = ceil(3.5); # 4
$floor = floor(3.5); # 3

In 5.000 to 5.003 perls, trigonometry was done in the Math::Complex module.

With 5.004, the Math::Trig module (part of the standard Perl distribution) > implements the trigonometric functions.

Internally it uses the Math::Complex module and some functions can break out from the real axis into the complex plane, for example the inverse sine of 2.

Rounding in financial applications can have serious implications, and the rounding method used should be specified precisely. In these cases, it probably pays not to trust whichever system rounding is being used by Perl, but to instead implement the rounding function you need yourself.

To see why, notice how you'll still have an issue on half-way-point alternation:

for ($i = 0; $i < 1.01; $i += 0.05)
{
   printf "%.1f ",$i
}

0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0

Don't blame Perl. It's the same as in C. IEEE says we have to do this. Perl numbers whose absolute values are integers under 2**31 (on 32 bit machines) will work pretty much like mathematical integers. Other numbers are not guaranteed.


Examples related to perl

The program can't start because api-ms-win-crt-runtime-l1-1-0.dll is missing while starting Apache server on my computer "End of script output before headers" error in Apache Perl - Multiple condition if statement without duplicating code? How to decrypt hash stored by bcrypt Split a string into array in Perl Turning multiple lines into one comma separated line String compare in Perl with "eq" vs "==" how to remove the first two columns in a file using shell (awk, sed, whatever) Find everything between two XML tags with RegEx Difference between \w and \b regular expression meta characters

Examples related to floating-point

Convert list or numpy array of single element to float in python Convert float to string with precision & number of decimal digits specified? Float and double datatype in Java C convert floating point to int Convert String to Float in Swift How do I change data-type of pandas data frame to string with a defined format? How to check if a float value is a whole number Convert floats to ints in Pandas? Converting Float to Dollars and Cents Format / Suppress Scientific Notation from Python Pandas Aggregation Results

Examples related to rounding

How to round a numpy array? How to pad a string with leading zeros in Python 3 Python - round up to the nearest ten How to round a Double to the nearest Int in swift? Using Math.round to round to one decimal place? How to round to 2 decimals with Python? Rounding to 2 decimal places in SQL Rounding to two decimal places in Python 2.7? Round a floating-point number down to the nearest integer? Rounding BigDecimal to *always* have two decimal places