[algorithm] Finding all cycles in a directed graph

The DFS-based variants with back edges will find cycles indeed, but in many cases it will NOT be minimal cycles. In general DFS gives you the flag that there is a cycle but it is not good enough to actually find cycles. For example, imagine 5 different cycles sharing two edges. There is no simple way to identify cycles using just DFS (including backtracking variants).

Johnson's algorithm is indeed gives all unique simple cycles and has good time and space complexity.

But if you want to just find MINIMAL cycles (meaning that there may be more then one cycle going through any vertex and we are interested in finding minimal ones) AND your graph is not very large, you can try to use the simple method below. It is VERY simple but rather slow compared to Johnson's.

So, one of the absolutely easiest way to find MINIMAL cycles is to use Floyd's algorithm to find minimal paths between all the vertices using adjacency matrix. This algorithm is nowhere near as optimal as Johnson's, but it is so simple and its inner loop is so tight that for smaller graphs (<=50-100 nodes) it absolutely makes sense to use it. Time complexity is O(n^3), space complexity O(n^2) if you use parent tracking and O(1) if you don't. First of all let's find the answer to the question if there is a cycle. The algorithm is dead-simple. Below is snippet in Scala.

  val NO_EDGE = Integer.MAX_VALUE / 2

  def shortestPath(weights: Array[Array[Int]]) = {
    for (k <- weights.indices;
         i <- weights.indices;
         j <- weights.indices) {
      val throughK = weights(i)(k) + weights(k)(j)
      if (throughK < weights(i)(j)) {
        weights(i)(j) = throughK
      }
    }
  }

Originally this algorithm operates on weighted-edge graph to find all shortest paths between all pairs of nodes (hence the weights argument). For it to work correctly you need to provide 1 if there is a directed edge between the nodes or NO_EDGE otherwise. After algorithm executes, you can check the main diagonal, if there are values less then NO_EDGE than this node participates in a cycle of length equal to the value. Every other node of the same cycle will have the same value (on the main diagonal).

To reconstruct the cycle itself we need to use slightly modified version of algorithm with parent tracking.

  def shortestPath(weights: Array[Array[Int]], parents: Array[Array[Int]]) = {
    for (k <- weights.indices;
         i <- weights.indices;
         j <- weights.indices) {
      val throughK = weights(i)(k) + weights(k)(j)
      if (throughK < weights(i)(j)) {
        parents(i)(j) = k
        weights(i)(j) = throughK
      }
    }
  }

Parents matrix initially should contain source vertex index in an edge cell if there is an edge between the vertices and -1 otherwise. After function returns, for each edge you will have reference to the parent node in the shortest path tree. And then it's easy to recover actual cycles.

All in all we have the following program to find all minimal cycles

  val NO_EDGE = Integer.MAX_VALUE / 2;

  def shortestPathWithParentTracking(
         weights: Array[Array[Int]],
         parents: Array[Array[Int]]) = {
    for (k <- weights.indices;
         i <- weights.indices;
         j <- weights.indices) {
      val throughK = weights(i)(k) + weights(k)(j)
      if (throughK < weights(i)(j)) {
        parents(i)(j) = parents(i)(k)
        weights(i)(j) = throughK
      }
    }
  }

  def recoverCycles(
         cycleNodes: Seq[Int], 
         parents: Array[Array[Int]]): Set[Seq[Int]] = {
    val res = new mutable.HashSet[Seq[Int]]()
    for (node <- cycleNodes) {
      var cycle = new mutable.ArrayBuffer[Int]()
      cycle += node
      var other = parents(node)(node)
      do {
        cycle += other
        other = parents(other)(node)
      } while(other != node)
      res += cycle.sorted
    }
    res.toSet
  }

and a small main method just to test the result

  def main(args: Array[String]): Unit = {
    val n = 3
    val weights = Array(Array(NO_EDGE, 1, NO_EDGE), Array(NO_EDGE, NO_EDGE, 1), Array(1, NO_EDGE, NO_EDGE))
    val parents = Array(Array(-1, 1, -1), Array(-1, -1, 2), Array(0, -1, -1))
    shortestPathWithParentTracking(weights, parents)
    val cycleNodes = parents.indices.filter(i => parents(i)(i) < NO_EDGE)
    val cycles: Set[Seq[Int]] = recoverCycles(cycleNodes, parents)
    println("The following minimal cycle found:")
    cycles.foreach(c => println(c.mkString))
    println(s"Total: ${cycles.size} cycle found")
  }

and the output is

The following minimal cycle found:
012
Total: 1 cycle found