I'll try to answer for the case of sin()
in a C program, compiled with GCC's C compiler on a current x86 processor (let's say a Intel Core 2 Duo).
In the C language the Standard C Library includes common math functions, not included in the language itself (e.g. pow
, sin
and cos
for power, sine, and cosine respectively). The headers of which are included in math.h.
Now on a GNU/Linux system, these libraries functions are provided by glibc (GNU libc or GNU C Library). But the GCC compiler wants you to link to the math library (libm.so
) using the -lm
compiler flag to enable usage of these math functions. I'm not sure why it isn't part of the standard C library. These would be a software version of the floating point functions, or "soft-float".
Aside: The reason for having the math functions separate is historic, and was merely intended to reduce the size of executable programs in very old Unix systems, possibly before shared libraries were available, as far as I know.
Now the compiler may optimize the standard C library function sin()
(provided by libm.so
) to be replaced with an call to a native instruction to your CPU/FPU's built-in sin() function, which exists as an FPU instruction (FSIN
for x86/x87) on newer processors like the Core 2 series (this is correct pretty much as far back as the i486DX). This would depend on optimization flags passed to the gcc compiler. If the compiler was told to write code that would execute on any i386 or newer processor, it would not make such an optimization. The -mcpu=486
flag would inform the compiler that it was safe to make such an optimization.
Now if the program executed the software version of the sin() function, it would do so based on a CORDIC (COordinate Rotation DIgital Computer) or BKM algorithm, or more likely a table or power-series calculation which is commonly used now to calculate such transcendental functions. [Src: http://en.wikipedia.org/wiki/Cordic#Application]
Any recent (since 2.9x approx.) version of gcc also offers a built-in version of sin, __builtin_sin()
that it will used to replace the standard call to the C library version, as an optimization.
I'm sure that is as clear as mud, but hopefully gives you more information than you were expecting, and lots of jumping off points to learn more yourself.