The existing answers are all good stuff, but I wanted to share one more little gem that has been valuable in debugging tricky precision issues in a GLSL shader. With very large int numbers represented as a floating point, one needs to take care to use floor(n) and floor(n + 0.5) properly to implement round() to an exact int. It is then possible to render a float value that is an exact int by the following logic to pack the byte components into R, G, and B output values.
// Break components out of 24 bit float with rounded int value
// scaledWOB = (offset >> 8) & 0xFFFF
float scaledWOB = floor(offset / 256.0);
// c2 = (scaledWOB >> 8) & 0xFF
float c2 = floor(scaledWOB / 256.0);
// c0 = offset - (scaledWOB << 8)
float c0 = offset - floor(scaledWOB * 256.0);
// c1 = scaledWOB - (c2 << 8)
float c1 = scaledWOB - floor(c2 * 256.0);
// Normalize to byte range
vec4 pix;
pix.r = c0 / 255.0;
pix.g = c1 / 255.0;
pix.b = c2 / 255.0;
pix.a = 1.0;
gl_FragColor = pix;