Question: What's the maximum number of edges in a directed graph with n vertices?
Each edge is specified by its start vertex and end vertex. There are n choices for the start vertex. Since there are no self-loops, there are n-1 choices for the end vertex. Multiplying these together counts all possible choices.
Answer: n(n-1)
Question: What's the maximum number of edges in an undirected graph with n vertices?
In an undirected graph, each edge is specified by its two endpoints and order doesn't matter. The number of edges is therefore the number of subsets of size 2 chosen from the set of vertices. Since the set of vertices has size n, the number of such subsets is given by the binomial coefficient C(n,2) (also known as "n choose 2"). Using the formula for binomial coefficients, C(n,2) = n(n-1)/2.
Answer: (n*(n-1))/2