[java] How to convert OutputStream to InputStream?

From my point of view, java.io.PipedInputStream/java.io.PipedOutputStream is the best option to considere. In some situations you may want to use ByteArrayInputStream/ByteArrayOutputStream. The problem is that you need to duplicate the buffer to convert a ByteArrayOutputStream to a ByteArrayInputStream. Also ByteArrayOutpuStream/ByteArrayInputStream are limited to 2GB. Here is an OutpuStream/InputStream implementation I wrote to bypass ByteArrayOutputStream/ByteArrayInputStream limitations (Scala code, but easily understandable for java developpers):

import java.io.{IOException, InputStream, OutputStream}

import scala.annotation.tailrec

/** Acts as a replacement for ByteArrayOutputStream
  *
  */
class HugeMemoryOutputStream(capacity: Long) extends OutputStream {
  private val PAGE_SIZE: Int = 1024000
  private val ALLOC_STEP: Int = 1024

  /** Pages array
    *
    */
  private var streamBuffers: Array[Array[Byte]] = Array.empty[Array[Byte]]

  /** Allocated pages count
    *
    */
  private var pageCount: Int = 0

  /** Allocated bytes count
    *
    */
  private var allocatedBytes: Long = 0

  /** Current position in stream
    *
    */
  private var position: Long = 0

  /** Stream length
    *
    */
  private var length: Long = 0

  allocSpaceIfNeeded(capacity)

  /** Gets page count based on given length
    *
    * @param length   Buffer length
    * @return         Page count to hold the specified amount of data
    */
  private def getPageCount(length: Long) = {
    var pageCount = (length / PAGE_SIZE).toInt + 1

    if ((length % PAGE_SIZE) == 0) {
      pageCount -= 1
    }

    pageCount
  }

  /** Extends pages array
    *
    */
  private def extendPages(): Unit = {
    if (streamBuffers.isEmpty) {
      streamBuffers = new Array[Array[Byte]](ALLOC_STEP)
    }
    else {
      val newStreamBuffers = new Array[Array[Byte]](streamBuffers.length + ALLOC_STEP)
      Array.copy(streamBuffers, 0, newStreamBuffers, 0, streamBuffers.length)
      streamBuffers = newStreamBuffers
    }

    pageCount = streamBuffers.length
  }

  /** Ensures buffers are bug enough to hold specified amount of data
    *
    * @param value  Amount of data
    */
  private def allocSpaceIfNeeded(value: Long): Unit = {
    @tailrec
    def allocSpaceIfNeededIter(value: Long): Unit = {
      val currentPageCount = getPageCount(allocatedBytes)
      val neededPageCount = getPageCount(value)

      if (currentPageCount < neededPageCount) {
        if (currentPageCount == pageCount) extendPages()

        streamBuffers(currentPageCount) = new Array[Byte](PAGE_SIZE)
        allocatedBytes = (currentPageCount + 1).toLong * PAGE_SIZE

        allocSpaceIfNeededIter(value)
      }
    }

    if (value < 0) throw new Error("AllocSpaceIfNeeded < 0")
    if (value > 0) {
      allocSpaceIfNeededIter(value)

      length = Math.max(value, length)
      if (position > length) position = length
    }
  }

  /**
    * Writes the specified byte to this output stream. The general
    * contract for <code>write</code> is that one byte is written
    * to the output stream. The byte to be written is the eight
    * low-order bits of the argument <code>b</code>. The 24
    * high-order bits of <code>b</code> are ignored.
    * <p>
    * Subclasses of <code>OutputStream</code> must provide an
    * implementation for this method.
    *
    * @param      b the <code>byte</code>.
    */
  @throws[IOException]
  override def write(b: Int): Unit = {
    val buffer: Array[Byte] = new Array[Byte](1)

    buffer(0) = b.toByte

    write(buffer)
  }

  /**
    * Writes <code>len</code> bytes from the specified byte array
    * starting at offset <code>off</code> to this output stream.
    * The general contract for <code>write(b, off, len)</code> is that
    * some of the bytes in the array <code>b</code> are written to the
    * output stream in order; element <code>b[off]</code> is the first
    * byte written and <code>b[off+len-1]</code> is the last byte written
    * by this operation.
    * <p>
    * The <code>write</code> method of <code>OutputStream</code> calls
    * the write method of one argument on each of the bytes to be
    * written out. Subclasses are encouraged to override this method and
    * provide a more efficient implementation.
    * <p>
    * If <code>b</code> is <code>null</code>, a
    * <code>NullPointerException</code> is thrown.
    * <p>
    * If <code>off</code> is negative, or <code>len</code> is negative, or
    * <code>off+len</code> is greater than the length of the array
    * <code>b</code>, then an <tt>IndexOutOfBoundsException</tt> is thrown.
    *
    * @param      b   the data.
    * @param      off the start offset in the data.
    * @param      len the number of bytes to write.
    */
  @throws[IOException]
  override def write(b: Array[Byte], off: Int, len: Int): Unit = {
    @tailrec
    def writeIter(b: Array[Byte], off: Int, len: Int): Unit = {
      val currentPage: Int = (position / PAGE_SIZE).toInt
      val currentOffset: Int = (position % PAGE_SIZE).toInt

      if (len != 0) {
        val currentLength: Int = Math.min(PAGE_SIZE - currentOffset, len)
        Array.copy(b, off, streamBuffers(currentPage), currentOffset, currentLength)

        position += currentLength

        writeIter(b, off + currentLength, len - currentLength)
      }
    }

    allocSpaceIfNeeded(position + len)
    writeIter(b, off, len)
  }

  /** Gets an InputStream that points to HugeMemoryOutputStream buffer
    *
    * @return InputStream
    */
  def asInputStream(): InputStream = {
    new HugeMemoryInputStream(streamBuffers, length)
  }

  private class HugeMemoryInputStream(streamBuffers: Array[Array[Byte]], val length: Long) extends InputStream {
    /** Current position in stream
      *
      */
    private var position: Long = 0

    /**
      * Reads the next byte of data from the input stream. The value byte is
      * returned as an <code>int</code> in the range <code>0</code> to
      * <code>255</code>. If no byte is available because the end of the stream
      * has been reached, the value <code>-1</code> is returned. This method
      * blocks until input data is available, the end of the stream is detected,
      * or an exception is thrown.
      *
      * <p> A subclass must provide an implementation of this method.
      *
      * @return the next byte of data, or <code>-1</code> if the end of the
      *         stream is reached.
      */
    @throws[IOException]
    def read: Int = {
      val buffer: Array[Byte] = new Array[Byte](1)

      if (read(buffer) == 0) throw new Error("End of stream")
      else buffer(0)
    }

    /**
      * Reads up to <code>len</code> bytes of data from the input stream into
      * an array of bytes.  An attempt is made to read as many as
      * <code>len</code> bytes, but a smaller number may be read.
      * The number of bytes actually read is returned as an integer.
      *
      * <p> This method blocks until input data is available, end of file is
      * detected, or an exception is thrown.
      *
      * <p> If <code>len</code> is zero, then no bytes are read and
      * <code>0</code> is returned; otherwise, there is an attempt to read at
      * least one byte. If no byte is available because the stream is at end of
      * file, the value <code>-1</code> is returned; otherwise, at least one
      * byte is read and stored into <code>b</code>.
      *
      * <p> The first byte read is stored into element <code>b[off]</code>, the
      * next one into <code>b[off+1]</code>, and so on. The number of bytes read
      * is, at most, equal to <code>len</code>. Let <i>k</i> be the number of
      * bytes actually read; these bytes will be stored in elements
      * <code>b[off]</code> through <code>b[off+</code><i>k</i><code>-1]</code>,
      * leaving elements <code>b[off+</code><i>k</i><code>]</code> through
      * <code>b[off+len-1]</code> unaffected.
      *
      * <p> In every case, elements <code>b[0]</code> through
      * <code>b[off]</code> and elements <code>b[off+len]</code> through
      * <code>b[b.length-1]</code> are unaffected.
      *
      * <p> The <code>read(b,</code> <code>off,</code> <code>len)</code> method
      * for class <code>InputStream</code> simply calls the method
      * <code>read()</code> repeatedly. If the first such call results in an
      * <code>IOException</code>, that exception is returned from the call to
      * the <code>read(b,</code> <code>off,</code> <code>len)</code> method.  If
      * any subsequent call to <code>read()</code> results in a
      * <code>IOException</code>, the exception is caught and treated as if it
      * were end of file; the bytes read up to that point are stored into
      * <code>b</code> and the number of bytes read before the exception
      * occurred is returned. The default implementation of this method blocks
      * until the requested amount of input data <code>len</code> has been read,
      * end of file is detected, or an exception is thrown. Subclasses are encouraged
      * to provide a more efficient implementation of this method.
      *
      * @param      b   the buffer into which the data is read.
      * @param      off the start offset in array <code>b</code>
      *                 at which the data is written.
      * @param      len the maximum number of bytes to read.
      * @return the total number of bytes read into the buffer, or
      *         <code>-1</code> if there is no more data because the end of
      *         the stream has been reached.
      * @see java.io.InputStream#read()
      */
    @throws[IOException]
    override def read(b: Array[Byte], off: Int, len: Int): Int = {
      @tailrec
      def readIter(acc: Int, b: Array[Byte], off: Int, len: Int): Int = {
        val currentPage: Int = (position / PAGE_SIZE).toInt
        val currentOffset: Int = (position % PAGE_SIZE).toInt

        val count: Int = Math.min(len, length - position).toInt

        if (count == 0 || position >= length) acc
        else {
          val currentLength = Math.min(PAGE_SIZE - currentOffset, count)
          Array.copy(streamBuffers(currentPage), currentOffset, b, off, currentLength)

          position += currentLength

          readIter(acc + currentLength, b, off + currentLength, len - currentLength)
        }
      }

      readIter(0, b, off, len)
    }

    /**
      * Skips over and discards <code>n</code> bytes of data from this input
      * stream. The <code>skip</code> method may, for a variety of reasons, end
      * up skipping over some smaller number of bytes, possibly <code>0</code>.
      * This may result from any of a number of conditions; reaching end of file
      * before <code>n</code> bytes have been skipped is only one possibility.
      * The actual number of bytes skipped is returned. If <code>n</code> is
      * negative, the <code>skip</code> method for class <code>InputStream</code> always
      * returns 0, and no bytes are skipped. Subclasses may handle the negative
      * value differently.
      *
      * The <code>skip</code> method of this class creates a
      * byte array and then repeatedly reads into it until <code>n</code> bytes
      * have been read or the end of the stream has been reached. Subclasses are
      * encouraged to provide a more efficient implementation of this method.
      * For instance, the implementation may depend on the ability to seek.
      *
      * @param      n the number of bytes to be skipped.
      * @return the actual number of bytes skipped.
      */
    @throws[IOException]
    override def skip(n: Long): Long = {
      if (n < 0) 0
      else {
        position = Math.min(position + n, length)
        length - position
      }
    }
  }
}

Easy to use, no buffer duplication, no 2GB memory limit

val out: HugeMemoryOutputStream = new HugeMemoryOutputStream(initialCapacity /*may be 0*/)

out.write(...)
...

val in1: InputStream = out.asInputStream()

in1.read(...)
...

val in2: InputStream = out.asInputStream()

in2.read(...)
...

Examples related to java

Under what circumstances can I call findViewById with an Options Menu / Action Bar item? How much should a function trust another function How to implement a simple scenario the OO way Two constructors How do I get some variable from another class in Java? this in equals method How to split a string in two and store it in a field How to do perspective fixing? String index out of range: 4 My eclipse won't open, i download the bundle pack it keeps saying error log

Examples related to inputstream

Convert InputStream to JSONObject How to read all of Inputstream in Server Socket JAVA Java - How Can I Write My ArrayList to a file, and Read (load) that file to the original ArrayList? How to create streams from string in Node.Js? How can I read a text file in Android? Can you explain the HttpURLConnection connection process? Open URL in Java to get the content How to convert byte[] to InputStream? Read input stream twice AmazonS3 putObject with InputStream length example

Examples related to outputstream

How to read pdf file and write it to outputStream Java - How Can I Write My ArrayList to a file, and Read (load) that file to the original ArrayList? Can you explain the HttpURLConnection connection process? How to convert OutputStream to InputStream? Byte[] to InputStream or OutputStream What is InputStream & Output Stream? Why and when do we use them? Connecting an input stream to an outputstream