I found other methods to check if a point is inside a polygon (here). I tested two of them only (is_inside_sm and is_inside_postgis) and the results were the same as the other methods.
Thanks to @epifanio, I parallelized the codes and compared them with @epifanio and @user3274748 (ray_tracing_numpy) methods. Note that both methods had a bug so I fixed them as shown in their codes below.
One more thing that I found is that the code provided for creating a polygon does not generate a closed path np.linspace(0,2*np.pi,lenpoly)[:-1]
. As a result, the codes provided in above GitHub repository may not work properly. So It's better to create a closed path (first and last points should be the same).
Codes
Method 1: parallelpointinpolygon
from numba import jit, njit
import numba
import numpy as np
@jit(nopython=True)
def pointinpolygon(x,y,poly):
n = len(poly)
inside = False
p2x = 0.0
p2y = 0.0
xints = 0.0
p1x,p1y = poly[0]
for i in numba.prange(n+1):
p2x,p2y = poly[i % n]
if y > min(p1y,p2y):
if y <= max(p1y,p2y):
if x <= max(p1x,p2x):
if p1y != p2y:
xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x
if p1x == p2x or x <= xints:
inside = not inside
p1x,p1y = p2x,p2y
return inside
@njit(parallel=True)
def parallelpointinpolygon(points, polygon):
D = np.empty(len(points), dtype=numba.boolean)
for i in numba.prange(0, len(D)): #<-- Fixed here, must start from zero
D[i] = pointinpolygon(points[i,0], points[i,1], polygon)
return D
Method 2: ray_tracing_numpy_numba
@jit(nopython=True)
def ray_tracing_numpy_numba(points,poly):
x,y = points[:,0], points[:,1]
n = len(poly)
inside = np.zeros(len(x),np.bool_)
p2x = 0.0
p2y = 0.0
p1x,p1y = poly[0]
for i in range(n+1):
p2x,p2y = poly[i % n]
idx = np.nonzero((y > min(p1y,p2y)) & (y <= max(p1y,p2y)) & (x <= max(p1x,p2x)))[0]
if len(idx): # <-- Fixed here. If idx is null skip comparisons below.
if p1y != p2y:
xints = (y[idx]-p1y)*(p2x-p1x)/(p2y-p1y)+p1x
if p1x == p2x:
inside[idx] = ~inside[idx]
else:
idxx = idx[x[idx] <= xints]
inside[idxx] = ~inside[idxx]
p1x,p1y = p2x,p2y
return inside
Method 3: Matplotlib contains_points
path = mpltPath.Path(polygon,closed=True) # <-- Very important to mention that the path
# is closed (default is false)
Method 4: is_inside_sm (got it from here)
@jit(nopython=True)
def is_inside_sm(polygon, point):
length = len(polygon)-1
dy2 = point[1] - polygon[0][1]
intersections = 0
ii = 0
jj = 1
while ii<length:
dy = dy2
dy2 = point[1] - polygon[jj][1]
# consider only lines which are not completely above/bellow/right from the point
if dy*dy2 <= 0.0 and (point[0] >= polygon[ii][0] or point[0] >= polygon[jj][0]):
# non-horizontal line
if dy<0 or dy2<0:
F = dy*(polygon[jj][0] - polygon[ii][0])/(dy-dy2) + polygon[ii][0]
if point[0] > F: # if line is left from the point - the ray moving towards left, will intersect it
intersections += 1
elif point[0] == F: # point on line
return 2
# point on upper peak (dy2=dx2=0) or horizontal line (dy=dy2=0 and dx*dx2<=0)
elif dy2==0 and (point[0]==polygon[jj][0] or (dy==0 and (point[0]-polygon[ii][0])*(point[0]-polygon[jj][0])<=0)):
return 2
ii = jj
jj += 1
#print 'intersections =', intersections
return intersections & 1
@njit(parallel=True)
def is_inside_sm_parallel(points, polygon):
ln = len(points)
D = np.empty(ln, dtype=numba.boolean)
for i in numba.prange(ln):
D[i] = is_inside_sm(polygon,points[i])
return D
Method 5: is_inside_postgis (got it from here)
@jit(nopython=True)
def is_inside_postgis(polygon, point):
length = len(polygon)
intersections = 0
dx2 = point[0] - polygon[0][0]
dy2 = point[1] - polygon[0][1]
ii = 0
jj = 1
while jj<length:
dx = dx2
dy = dy2
dx2 = point[0] - polygon[jj][0]
dy2 = point[1] - polygon[jj][1]
F =(dx-dx2)*dy - dx*(dy-dy2);
if 0.0==F and dx*dx2<=0 and dy*dy2<=0:
return 2;
if (dy>=0 and dy2<0) or (dy2>=0 and dy<0):
if F > 0:
intersections += 1
elif F < 0:
intersections -= 1
ii = jj
jj += 1
#print 'intersections =', intersections
return intersections != 0
@njit(parallel=True)
def is_inside_postgis_parallel(points, polygon):
ln = len(points)
D = np.empty(ln, dtype=numba.boolean)
for i in numba.prange(ln):
D[i] = is_inside_postgis(polygon,points[i])
return D
Timing for 10 million points:
parallelpointinpolygon Elapsed time: 4.0122294425964355
Matplotlib contains_points Elapsed time: 14.117807388305664
ray_tracing_numpy_numba Elapsed time: 7.908452272415161
sm_parallel Elapsed time: 0.7710440158843994
is_inside_postgis_parallel Elapsed time: 2.131121873855591
Here is the code.
import matplotlib.pyplot as plt
import matplotlib.path as mpltPath
from time import time
import numpy as np
np.random.seed(2)
time_parallelpointinpolygon=[]
time_mpltPath=[]
time_ray_tracing_numpy_numba=[]
time_is_inside_sm_parallel=[]
time_is_inside_postgis_parallel=[]
n_points=[]
for i in range(1, 10000002, 1000000):
n_points.append(i)
lenpoly = 100
polygon = [[np.sin(x)+0.5,np.cos(x)+0.5] for x in np.linspace(0,2*np.pi,lenpoly)]
polygon = np.array(polygon)
N = i
points = np.random.uniform(-1.5, 1.5, size=(N, 2))
#Method 1
start_time = time()
inside1=parallelpointinpolygon(points, polygon)
time_parallelpointinpolygon.append(time()-start_time)
# Method 2
start_time = time()
path = mpltPath.Path(polygon,closed=True)
inside2 = path.contains_points(points)
time_mpltPath.append(time()-start_time)
# Method 3
start_time = time()
inside3=ray_tracing_numpy_numba(points,polygon)
time_ray_tracing_numpy_numba.append(time()-start_time)
# Method 4
start_time = time()
inside4=is_inside_sm_parallel(points,polygon)
time_is_inside_sm_parallel.append(time()-start_time)
# Method 5
start_time = time()
inside5=is_inside_postgis_parallel(points,polygon)
time_is_inside_postgis_parallel.append(time()-start_time)
plt.plot(n_points,time_parallelpointinpolygon,label='parallelpointinpolygon')
plt.plot(n_points,time_mpltPath,label='mpltPath')
plt.plot(n_points,time_ray_tracing_numpy_numba,label='ray_tracing_numpy_numba')
plt.plot(n_points,time_is_inside_sm_parallel,label='is_inside_sm_parallel')
plt.plot(n_points,time_is_inside_postgis_parallel,label='is_inside_postgis_parallel')
plt.xlabel("N points")
plt.ylabel("time (sec)")
plt.legend(loc = 'best')
plt.show()
CONCLUSION
The fastest algorithms are:
1- is_inside_sm_parallel
2- is_inside_postgis_parallel
3- parallelpointinpolygon (@epifanio)