There are two ways to do it: creating filter condition 1) Manually 2) Dynamically.
Sample DataFrame:
val df = spark.createDataFrame(Seq(
(0, "a1", "b1", "c1", "d1"),
(1, "a2", "b2", "c2", "d2"),
(2, "a3", "b3", null, "d3"),
(3, "a4", null, "c4", "d4"),
(4, null, "b5", "c5", "d5")
)).toDF("id", "col1", "col2", "col3", "col4")
+---+----+----+----+----+
| id|col1|col2|col3|col4|
+---+----+----+----+----+
| 0| a1| b1| c1| d1|
| 1| a2| b2| c2| d2|
| 2| a3| b3|null| d3|
| 3| a4|null| c4| d4|
| 4|null| b5| c5| d5|
+---+----+----+----+----+
1) Creating filter condition manually i.e. using DataFrame where
or filter
function
df.filter(col("col1").isNotNull && col("col2").isNotNull).show
or
df.where("col1 is not null and col2 is not null").show
Result:
+---+----+----+----+----+
| id|col1|col2|col3|col4|
+---+----+----+----+----+
| 0| a1| b1| c1| d1|
| 1| a2| b2| c2| d2|
| 2| a3| b3|null| d3|
+---+----+----+----+----+
2) Creating filter condition dynamically: This is useful when we don't want any column to have null value and there are large number of columns, which is mostly the case.
To create the filter condition manually in these cases will waste a lot of time. In below code we are including all columns dynamically using map
and reduce
function on DataFrame columns:
val filterCond = df.columns.map(x=>col(x).isNotNull).reduce(_ && _)
How filterCond
looks:
filterCond: org.apache.spark.sql.Column = (((((id IS NOT NULL) AND (col1 IS NOT NULL)) AND (col2 IS NOT NULL)) AND (col3 IS NOT NULL)) AND (col4 IS NOT NULL))
Filtering:
val filteredDf = df.filter(filterCond)
Result:
+---+----+----+----+----+
| id|col1|col2|col3|col4|
+---+----+----+----+----+
| 0| a1| b1| c1| d1|
| 1| a2| b2| c2| d2|
+---+----+----+----+----+