[apache-spark] Convert date from String to Date format in Dataframes

I have personally found some errors in when using unix_timestamp based date converstions from dd-MMM-yyyy format to yyyy-mm-dd, using spark 1.6, but this may extend into recent versions. Below I explain a way to solve the problem using java.time that should work in all versions of spark:

I've seen errors when doing:

from_unixtime(unix_timestamp(StockMarketClosingDate, 'dd-MMM-yyyy'), 'yyyy-MM-dd') as FormattedDate

Below is code to illustrate the error, and my solution to fix it. First I read in stock market data, in a common standard file format:

    import sys.process._
    import org.apache.spark.sql.SQLContext
    import org.apache.spark.sql.functions.udf
    import org.apache.spark.sql.types.{StructType, StructField, StringType, IntegerType, DateType}
    import sqlContext.implicits._

    val EODSchema = StructType(Array(
        StructField("Symbol"                , StringType, true),     //$1       
        StructField("Date"                  , StringType, true),     //$2       
        StructField("Open"                  , StringType, true),     //$3       
        StructField("High"                  , StringType, true),     //$4
        StructField("Low"                   , StringType, true),     //$5
        StructField("Close"                 , StringType, true),     //$6
        StructField("Volume"                , StringType, true)      //$7
        ))

    val textFileName = "/user/feeds/eoddata/INDEX/INDEX_19*.csv"

    // below is code to read using later versions of spark
    //val eoddata = spark.read.format("csv").option("sep", ",").schema(EODSchema).option("header", "true").load(textFileName)


    // here is code to read using 1.6, via, "com.databricks:spark-csv_2.10:1.2.0"

    val eoddata = sqlContext.read
                               .format("com.databricks.spark.csv")
                               .option("header", "true")                               // Use first line of all files as header
                               .option("delimiter", ",")                               //.option("dateFormat", "dd-MMM-yyyy") failed to work
                               .schema(EODSchema)
                               .load(textFileName)

    eoddata.registerTempTable("eoddata")

And here is the date conversions having issues:

%sql 
-- notice there are errors around the turn of the year
Select 
    e.Date as StringDate
,   cast(from_unixtime(unix_timestamp(e.Date, "dd-MMM-yyyy"), 'YYYY-MM-dd') as Date)  as ProperDate
,   e.Close
from eoddata e
where e.Symbol = 'SPX.IDX'
order by cast(from_unixtime(unix_timestamp(e.Date, "dd-MMM-yyyy"), 'YYYY-MM-dd') as Date)
limit 1000

A chart made in zeppelin shows spikes, which are errors.

Errors in date conversion seen as spikes

and here is the check that shows the date conversion errors:

// shows the unix_timestamp conversion approach can create errors
val result =  sqlContext.sql("""
Select errors.* from
(
    Select 
    t.*
    , substring(t.OriginalStringDate, 8, 11) as String_Year_yyyy 
    , substring(t.ConvertedCloseDate, 0, 4)  as Converted_Date_Year_yyyy
    from
    (        Select
                Symbol
            ,   cast(from_unixtime(unix_timestamp(e.Date, "dd-MMM-yyyy"), 'YYYY-MM-dd') as Date)  as ConvertedCloseDate
            ,   e.Date as OriginalStringDate
            ,   Close
            from eoddata e
            where e.Symbol = 'SPX.IDX'
    ) t 
) errors
where String_Year_yyyy <> Converted_Date_Year_yyyy
""")


//df.withColumn("tx_date", to_date(unix_timestamp($"date", "M/dd/yyyy").cast("timestamp")))


result.registerTempTable("SPX")
result.cache()
result.show(100)
result: org.apache.spark.sql.DataFrame = [Symbol: string, ConvertedCloseDate: date, OriginalStringDate: string, Close: string, String_Year_yyyy: string, Converted_Date_Year_yyyy: string]
res53: result.type = [Symbol: string, ConvertedCloseDate: date, OriginalStringDate: string, Close: string, String_Year_yyyy: string, Converted_Date_Year_yyyy: string]
+-------+------------------+------------------+-------+----------------+------------------------+
| Symbol|ConvertedCloseDate|OriginalStringDate|  Close|String_Year_yyyy|Converted_Date_Year_yyyy|
+-------+------------------+------------------+-------+----------------+------------------------+
|SPX.IDX|        1997-12-30|       30-Dec-1996| 753.85|            1996|                    1997|
|SPX.IDX|        1997-12-31|       31-Dec-1996| 740.74|            1996|                    1997|
|SPX.IDX|        1998-12-29|       29-Dec-1997| 953.36|            1997|                    1998|
|SPX.IDX|        1998-12-30|       30-Dec-1997| 970.84|            1997|                    1998|
|SPX.IDX|        1998-12-31|       31-Dec-1997| 970.43|            1997|                    1998|
|SPX.IDX|        1998-01-01|       01-Jan-1999|1229.23|            1999|                    1998|
+-------+------------------+------------------+-------+----------------+------------------------+
FINISHED   

After this result, I switched to java.time conversions with a UDF like this, which worked for me:

// now we will create a UDF that uses the very nice java.time library to properly convert the silly stockmarket dates
// start by importing the specific java.time libraries that superceded the joda.time ones
import java.time.LocalDate
import java.time.format.DateTimeFormatter

// now define a specific data conversion function we want

def fromEODDate (YourStringDate: String): String = {

    val formatter = DateTimeFormatter.ofPattern("dd-MMM-yyyy")
    var   retDate = LocalDate.parse(YourStringDate, formatter)

    // this should return a proper yyyy-MM-dd date from the silly dd-MMM-yyyy formats
    // now we format this true local date with a formatter to the desired yyyy-MM-dd format

    val retStringDate = retDate.format(DateTimeFormatter.ISO_LOCAL_DATE)
    return(retStringDate)
}

Now I register it as a function for use in sql:

sqlContext.udf.register("fromEODDate", fromEODDate(_:String))

and check the results, and rerun test:

val results = sqlContext.sql("""
    Select
        e.Symbol    as Symbol
    ,   e.Date      as OrigStringDate
    ,   Cast(fromEODDate(e.Date) as Date) as ConvertedDate
    ,   e.Open
    ,   e.High
    ,   e.Low
    ,   e.Close
    from eoddata e
    order by Cast(fromEODDate(e.Date) as Date)
""")

results.printSchema()
results.cache()
results.registerTempTable("results")
results.show(10)
results: org.apache.spark.sql.DataFrame = [Symbol: string, OrigStringDate: string, ConvertedDate: date, Open: string, High: string, Low: string, Close: string]
root
 |-- Symbol: string (nullable = true)
 |-- OrigStringDate: string (nullable = true)
 |-- ConvertedDate: date (nullable = true)
 |-- Open: string (nullable = true)
 |-- High: string (nullable = true)
 |-- Low: string (nullable = true)
 |-- Close: string (nullable = true)
res79: results.type = [Symbol: string, OrigStringDate: string, ConvertedDate: date, Open: string, High: string, Low: string, Close: string]
+--------+--------------+-------------+-------+-------+-------+-------+
|  Symbol|OrigStringDate|ConvertedDate|   Open|   High|    Low|  Close|
+--------+--------------+-------------+-------+-------+-------+-------+
|ADVA.IDX|   01-Jan-1996|   1996-01-01|    364|    364|    364|    364|
|ADVN.IDX|   01-Jan-1996|   1996-01-01|   1527|   1527|   1527|   1527|
|ADVQ.IDX|   01-Jan-1996|   1996-01-01|   1283|   1283|   1283|   1283|
|BANK.IDX|   01-Jan-1996|   1996-01-01|1009.41|1009.41|1009.41|1009.41|
| BKX.IDX|   01-Jan-1996|   1996-01-01|  39.39|  39.39|  39.39|  39.39|
|COMP.IDX|   01-Jan-1996|   1996-01-01|1052.13|1052.13|1052.13|1052.13|
| CPR.IDX|   01-Jan-1996|   1996-01-01|  1.261|  1.261|  1.261|  1.261|
|DECA.IDX|   01-Jan-1996|   1996-01-01|    205|    205|    205|    205|
|DECN.IDX|   01-Jan-1996|   1996-01-01|    825|    825|    825|    825|
|DECQ.IDX|   01-Jan-1996|   1996-01-01|    754|    754|    754|    754|
+--------+--------------+-------------+-------+-------+-------+-------+
only showing top 10 rows

which looks ok, and I rerun my chart, to see if there are errors/spikes:

enter image description here

As you can see, no more spikes or errors. I now use a UDF as I've shown to apply my date format transformations to a standard yyyy-MM-dd format, and have not had spurious errors since. :-)