The issue with the "one thread per request" model for a server is that they don't scale well for several scenarios compared to the event loop thread model.
Typically, in I/O intensive scenarios the requests spend most of the time waiting for I/O to complete. During this time, in the "one thread per request" model, the resources linked to the thread (such as memory) are unused and memory is the limiting factor. In the event loop model, the loop thread selects the next event (I/O finished) to handle. So the thread is always busy (if you program it correctly of course).
The event loop model as all new things seems shiny and the solution for all issues but which model to use will depend on the scenario you need to tackle. If you have an intensive I/O scenario (like a proxy), the event base model will rule, whereas a CPU intensive scenario with a low number of concurrent processes will work best with the thread-based model.
In the real world most of the scenarios will be a bit in the middle. You will need to balance the real need for scalability with the development complexity to find the correct architecture (e.g. have an event base front-end that delegates to the backend for the CPU intensive tasks. The front end will use little resources waiting for the task result.) As with any distributed system it requires some effort to make it work.
If you are looking for the silver bullet that will fit with any scenario without any effort, you will end up with a bullet in your foot.