Another version, if you have a scenario where you have list of vectors and a query vector and you want to compute the cosine similarity of query vector with all the vectors in the list, you can do it in one go in the below fashion:
>>> import numpy as np
>>> A # list of vectors, shape -> m x n
array([[ 3, 45, 7, 2],
[ 1, 23, 3, 4]])
>>> B # query vector, shape -> 1 x n
array([ 2, 54, 13, 15])
>>> similarity_scores = A.dot(B)/ (np.linalg.norm(A, axis=1) * np.linalg.norm(B))
>>> similarity_scores
array([0.97228425, 0.99026919])