So at the most basic level a HANDLE of any sort is a pointer to a pointer or
#define HANDLE void **
Now as to why you would want to use it
Lets take a setup:
class Object{
int Value;
}
class LargeObj{
char * val;
LargeObj()
{
val = malloc(2048 * 1000);
}
}
void foo(Object bar){
LargeObj lo = new LargeObj();
bar.Value++;
}
void main()
{
Object obj = new Object();
obj.val = 1;
foo(obj);
printf("%d", obj.val);
}
So because obj was passed by value (make a copy and give that to the function) to foo, the printf will print the original value of 1.
Now if we update foo to:
void foo(Object * bar)
{
LargeObj lo = new LargeObj();
bar->val++;
}
There is a chance that the printf will print the updated value of 2. But there is also the possibility that foo will cause some form of memory corruption or exception.
The reason is this while you are now using a pointer to pass obj to the function you are also allocating 2 Megs of memory, this could cause the OS to move the memory around updating the location of obj. Since you have passed the pointer by value, if obj gets moved then the OS updates the pointer but not the copy in the function and potentially causing problems.
A final update to foo of:
void foo(Object **bar){
LargeObj lo = LargeObj();
Object * b = &bar;
b->val++;
}
This will always print the updated value.
See, when the compiler allocates memory for pointers it marks them as immovable, so any re-shuffling of memory caused by the large object being allocated the value passed to the function will point to the correct address to find out the final location in memory to update.
Any particular types of HANDLEs (hWnd, FILE, etc) are domain specific and point to a certain type of structure to protect against memory corruption.