[math] Why can't decimal numbers be represented exactly in binary?

The number 61.0 does indeed have an exact floating-point operation—but that's not true for all integers. If you wrote a loop that added one to both a double-precision floating point number and a 64-bit integer, eventually you'd reach a point where the 64-bit integer perfectly represents a number, but the floating point doesn't—because there aren't enough significant bits.

It's just much easier to reach the point of approximation on the right side of the decimal point. If you started writing out all the numbers in binary floating point, it'd make more sense.

Another way of thinking about it is that when you note that 61.0 is perfectly representable in base 10, and shifting the decimal point around doesn't change that, you're performing multiplication by powers of ten (10^1, 10^-1). In floating point, multiplying by powers of two does not affect the precision of the number. Try taking 61.0 and dividing it by three repeatedly for an illustration of how a perfectly precise number can lose its precise representation.