You can also use a spline. Feed in the values you have and interpolate points between your known points. Linking this with a least-squares fit, moving average or kalman filter (as mentioned in other answers) gives you the ability to calculate the points inbetween your "known" points.
Being able to interpolate the values between your knowns gives you a nice smooth transition and a /reasonable/ approximation of what data would be present if you had a higher-fidelity. http://en.wikipedia.org/wiki/Spline_interpolation
Different splines have different characteristics. The one's I've seen most commonly used are Akima and Cubic splines.
Another algorithm to consider is the Ramer-Douglas-Peucker line simplification algorithm, it is quite commonly used in the simplification of GPS data. (http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm)