[c++] Virtual/pure virtual explained

What exactly does it mean if a function is defined as virtual and is that the same as pure virtual?

This question is related to c++ virtual

The answer is


"Virtual" means that the method may be overridden in subclasses, but has an directly-callable implementation in the base class. "Pure virtual" means it is a virtual method with no directly-callable implementation. Such a method must be overridden at least once in the inheritance hierarchy -- if a class has any unimplemented virtual methods, objects of that class cannot be constructed and compilation will fail.

@quark points out that pure-virtual methods can have an implementation, but as pure-virtual methods must be overridden, the default implementation can't be directly called. Here is an example of a pure-virtual method with a default:

#include <cstdio>

class A {
public:
    virtual void Hello() = 0;
};

void A::Hello() {
    printf("A::Hello\n");
}

class B : public A {
public:
    void Hello() {
        printf("B::Hello\n");
        A::Hello();
    }
};

int main() {
    /* Prints:
           B::Hello
           A::Hello
    */
    B b;
    b.Hello();
    return 0;
}

According to comments, whether or not compilation will fail is compiler-specific. In GCC 4.3.3 at least, it won't compile:

class A {
public:
    virtual void Hello() = 0;
};

int main()
{
    A a;
    return 0;
}

Output:

$ g++ -c virt.cpp 
virt.cpp: In function ‘int main()’:
virt.cpp:8: error: cannot declare variable ‘a’ to be of abstract type ‘A’
virt.cpp:1: note:   because the following virtual functions are pure within ‘A’:
virt.cpp:3: note:   virtual void A::Hello()

Virtual methods CAN be overridden by deriving classes, but need an implementation in the base class (the one that will be overridden)

Pure virtual methods have no implementation the base class. They need to be defined by derived classes. (So technically overridden is not the right term, because there's nothing to override).

Virtual corresponds to the default java behaviour, when the derived class overrides a method of the base class.

Pure Virtual methods correspond to the behaviour of abstract methods within abstract classes. And a class that only contains pure virtual methods and constants would be the cpp-pendant to an Interface.


  • Virtual functions must have a definition in base class and also in derived class but not necessary, for example ToString() or toString() function is a Virtual so you can provide your own implementation by overriding it in user-defined class(es).

  • Virtual functions are declared and defined in normal class.

  • Pure virtual function must be declared ending with "= 0" and it can only be declared in abstract class.

  • An abstract class having a pure virtual function(s) cannot have a definition(s) of that pure virtual functions, so it implies that implementation must be provided in class(es) that derived from that abstract class.


The virtual keyword gives C++ its' ability to support polymorphism. When you have a pointer to an object of some class such as:

class Animal
{
  public:
    virtual int GetNumberOfLegs() = 0;
};

class Duck : public Animal
{
  public:
     int GetNumberOfLegs() { return 2; }
};

class Horse : public Animal
{
  public:
     int GetNumberOfLegs() { return 4; }
};

void SomeFunction(Animal * pAnimal)
{
  cout << pAnimal->GetNumberOfLegs();
}

In this (silly) example, the GetNumberOfLegs() function returns the appropriate number based on the class of the object that it is called for.

Now, consider the function 'SomeFunction'. It doesn't care what type of animal object is passed to it, as long as it is derived from Animal. The compiler will automagically cast any Animal-derived class to a Animal as it is a base class.

If we do this:

Duck d;
SomeFunction(&d);

it'd output '2'. If we do this:

Horse h;
SomeFunction(&h);

it'd output '4'. We can't do this:

Animal a;
SomeFunction(&a);

because it won't compile due to the GetNumberOfLegs() virtual function being pure, which means it must be implemented by deriving classes (subclasses).

Pure Virtual Functions are mostly used to define:

a) abstract classes

These are base classes where you have to derive from them and then implement the pure virtual functions.

b) interfaces

These are 'empty' classes where all functions are pure virtual and hence you have to derive and then implement all of the functions.


In a C++ class, virtual is the keyword which designates that, a method can be overridden (i.e. implemented by) a subclass. For example:

class Shape 
{
  public:
    Shape();
    virtual ~Shape();

    std::string getName() // not overridable
    {
      return m_name;
    }

    void setName( const std::string& name ) // not overridable
    {
      m_name = name;
    }

  protected:
    virtual void initShape() // overridable
    {
      setName("Generic Shape");
    }

  private:
    std::string m_name;
};

In this case a subclass can override the the initShape function to do some specialized work:

class Square : public Shape
{
  public: 
    Square();
    virtual ~Square();

  protected:
    virtual void initShape() // override the Shape::initShape function
    {
      setName("Square");
    }
}

The term pure virtual refers to virtual functions that need to be implemented by a subclass and have not been implemented by the base class. You designate a method as pure virtual by using the virtual keyword and adding a =0 at the end of the method declaration.

So, if you wanted to make Shape::initShape pure virtual you would do the following:

class Shape 
{
 ...
    virtual void initShape() = 0; // pure virtual method
 ... 
};

By adding a pure virtual method to your class you make the class an abstract base class which is very handy for separating interfaces from implementation.


Pure Virtual Function

try this code

#include <iostream>
using namespace std;
class aClassWithPureVirtualFunction
{

public:

    virtual void sayHellow()=0;

};

class anotherClass:aClassWithPureVirtualFunction
{

public:

    void sayHellow()
    {

        cout<<"hellow World";
    }

};
int main()
{
    //aClassWithPureVirtualFunction virtualObject;
    /*
     This not possible to create object of a class that contain pure virtual function
    */
    anotherClass object;
    object.sayHellow();
}

In class anotherClass remove the function sayHellow and run the code. you will get error!Because when a class contain a pure virtual function, no object can be created from that class and it is inherited then its derived class must implement that function.

Virtual function

try another code

#include <iostream>
using namespace std;
class aClassWithPureVirtualFunction
{

public:

    virtual void sayHellow()
    {
        cout<<"from base\n";
    }

};

class anotherClass:public aClassWithPureVirtualFunction
{

public:

    void sayHellow()
    {

        cout<<"from derived \n";
    }

};
int main()
{
    aClassWithPureVirtualFunction *baseObject=new aClassWithPureVirtualFunction;
    baseObject->sayHellow();///call base one

    baseObject=new anotherClass;
    baseObject->sayHellow();////call the derived one!

}

Here the sayHellow function is marked as virtual in base class.It say the compiler that try searching the function in derived class and implement the function.If not found then execute the base one.Thanks


"A virtual function or virtual method is a function or method whose behavior can be overridden within an inheriting class by a function with the same signature" - wikipedia

This is not a good explanation for virtual functions. Because, even if a member is not virtual, inheriting classes can override it. You can try and see it yourself.

The difference shows itself when a function take a base class as a parameter. When you give an inheriting class as the input, that function uses the base class implementation of the overriden function. However, if that function is virtual, it uses the one that is implemented in the deriving class.


I'd like to comment on Wikipedia's definition of virtual, as repeated by several here. [At the time this answer was written,] Wikipedia defined a virtual method as one that can be overridden in subclasses. [Fortunately, Wikipedia has been edited since, and it now explains this correctly.] That is incorrect: any method, not just virtual ones, can be overridden in subclasses. What virtual does is to give you polymorphism, that is, the ability to select at run-time the most-derived override of a method.

Consider the following code:

#include <iostream>
using namespace std;

class Base {
public:
    void NonVirtual() {
        cout << "Base NonVirtual called.\n";
    }
    virtual void Virtual() {
        cout << "Base Virtual called.\n";
    }
};
class Derived : public Base {
public:
    void NonVirtual() {
        cout << "Derived NonVirtual called.\n";
    }
    void Virtual() {
        cout << "Derived Virtual called.\n";
    }
};

int main() {
    Base* bBase = new Base();
    Base* bDerived = new Derived();

    bBase->NonVirtual();
    bBase->Virtual();
    bDerived->NonVirtual();
    bDerived->Virtual();
}

What is the output of this program?

Base NonVirtual called.
Base Virtual called.
Base NonVirtual called.
Derived Virtual called.

Derived overrides every method of Base: not just the virtual one, but also the non-virtual.

We see that when you have a Base-pointer-to-Derived (bDerived), calling NonVirtual calls the Base class implementation. This is resolved at compile-time: the compiler sees that bDerived is a Base*, that NonVirtual is not virtual, so it does the resolution on class Base.

However, calling Virtual calls the Derived class implementation. Because of the keyword virtual, the selection of the method happens at run-time, not compile-time. What happens here at compile-time is that the compiler sees that this is a Base*, and that it's calling a virtual method, so it insert a call to the vtable instead of class Base. This vtable is instantiated at run-time, hence the run-time resolution to the most-derived override.

I hope this wasn't too confusing. In short, any method can be overridden, but only virtual methods give you polymorphism, that is, run-time selection of the most derived override. In practice, however, overriding a non-virtual method is considered bad practice and rarely used, so many people (including whoever wrote that Wikipedia article) think that only virtual methods can be overridden.


Simula, C++, and C#, which use static method binding by default, the programmer can specify that particular methods should use dynamic binding by labeling them as virtual. Dynamic method binding is central to object-oriented programming.

Object oriented programming requires three fundamental concepts: encapsulation, inheritance, and dynamic method binding.

Encapsulation allows the implementation details of an abstraction to be hidden behind a simple interface.

Inheritance allows a new abstraction to be defined as an extension or refinement of some existing abstraction, obtaining some or all of its characteristics automatically.

Dynamic method binding allows the new abstraction to display its new behavior even when used in a context that expects the old abstraction.


How does the virtual keyword work?

Assume that Man is a base class, Indian is derived from man.

Class Man
{
 public: 
   virtual void do_work()
   {}
}

Class Indian : public Man
{
 public: 
   void do_work()
   {}
}

Declaring do_work() as virtual simply means: which do_work() to call will be determined ONLY at run-time.

Suppose I do,

Man *man;
man = new Indian();
man->do_work(); // Indian's do work is only called.

If virtual is not used, the same is statically determined or statically bound by the compiler, depending on what object is calling. So if an object of Man calls do_work(), Man's do_work() is called EVEN THOUGH IT POINTS TO AN INDIAN OBJECT

I believe that the top voted answer is misleading - Any method whether or not virtual can have an overridden implementation in the derived class. With specific reference to C++ the correct difference is run-time (when virtual is used) binding and compile-time (when virtual is not used but a method is overridden and a base pointer is pointed at a derived object) binding of associated functions.

There seems to be another misleading comment that says,

"Justin, 'pure virtual' is just a term (not a keyword, see my answer below) used to mean "this function cannot be implemented by the base class."

THIS IS WRONG! Purely virtual functions can also have a body AND CAN BE IMPLEMENTED! The truth is that an abstract class' pure virtual function can be called statically! Two very good authors are Bjarne Stroustrup and Stan Lippman.... because they wrote the language.


A virtual function is a member function that is declared in a base class and that is redefined by derived class. Virtual function are hierarchical in order of inheritance. When a derived class does not override a virtual function, the function defined within its base class is used.

A pure virtual function is one that contains no definition relative to the base class. It has no implementation in the base class. Any derived class must override this function.