[c++] What are the most widely used C++ vector/matrix math/linear algebra libraries, and their cost and benefit tradeoffs?

So I'm a pretty critical person, and figure if I'm going to invest in a library, I'd better know what I'm getting myself into. I figure it's better to go heavy on the criticism and light on the flattery when scrutinizing; what's wrong with it has many more implications for the future than what's right. So I'm going to go overboard here a little bit to provide the kind of answer that would have helped me and I hope will help others who may journey down this path. Keep in mind that this is based on what little reviewing/testing I've done with these libs. Oh and I stole some of the positive description from Reed.

I'll mention up top that I went with GMTL despite it's idiosyncrasies because the Eigen2 unsafeness was too big of a downside. But I've recently learned that the next release of Eigen2 will contain defines that will shut off the alignment code, and make it safe. So I may switch over.

Update: I've switched to Eigen3. Despite it's idiosyncrasies, its scope and elegance are too hard to ignore, and the optimizations which make it unsafe can be turned off with a define.

Eigen2/Eigen3

Benefits: LGPL MPL2, Clean, well designed API, fairly easy to use. Seems to be well maintained with a vibrant community. Low memory overhead. High performance. Made for general linear algebra, but good geometric functionality available as well. All header lib, no linking required.

Idiocyncracies/downsides: (Some/all of these can be avoided by some defines that are available in the current development branch Eigen3)

  • Unsafe performance optimizations result in needing careful following of rules. Failure to follow rules causes crashes.
    • you simply cannot safely pass-by-value
    • use of Eigen types as members requires special allocator customization (or you crash)
    • use with stl container types and possibly other templates required special allocation customization (or you will crash)
    • certain compilers need special care to prevent crashes on function calls (GCC windows)

GMTL

Benefits: LGPL, Fairly Simple API, specifically designed for graphics engines. Includes many primitive types geared towards rendering (such as planes, AABB, quatenrions with multiple interpolation, etc) that aren't in any other packages. Very low memory overhead, quite fast, easy to use. All header based, no linking necessary.

Idiocyncracies/downsides:

  • API is quirky
    • what might be myVec.x() in another lib is only available via myVec[0] (Readability problem)
      • an array or stl::vector of points may cause you to do something like pointsList[0][0] to access the x component of the first point
    • in a naive attempt at optimization, removed cross(vec,vec) and replaced with makeCross(vec,vec,vec) when compiler eliminates unnecessary temps anyway
    • normal math operations don't return normal types unless you shut off some optimization features e.g.: vec1 - vec2 does not return a normal vector so length( vecA - vecB ) fails even though vecC = vecA - vecB works. You must wrap like: length( Vec( vecA - vecB ) )
    • operations on vectors are provided by external functions rather than members. This may require you to use the scope resolution everywhere since common symbol names may collide
    • you have to do
        length( makeCross( vecA, vecB ) )
      or
        gmtl::length( gmtl::makeCross( vecA, vecB ) )
      where otherwise you might try
        vecA.cross( vecB ).length()
  • not well maintained
    • still claimed as "beta"
    • documentation missing basic info like which headers are needed to use normal functionalty
      • Vec.h does not contain operations for Vectors, VecOps.h contains some, others are in Generate.h for example. cross(vec&,vec&,vec&) in VecOps.h, [make]cross(vec&,vec&) in Generate.h
  • immature/unstable API; still changing.
    • For example "cross" has moved from "VecOps.h" to "Generate.h", and then the name was changed to "makeCross". Documentation examples fail because still refer to old versions of functions that no-longer exist.

NT2

Can't tell because they seem to be more interested in the fractal image header of their web page than the content. Looks more like an academic project than a serious software project.

Latest release over 2 years ago.

Apparently no documentation in English though supposedly there is something in French somewhere.

Cant find a trace of a community around the project.

LAPACK & BLAS

Benefits: Old and mature.

Downsides:

  • old as dinosaurs with really crappy APIs

Examples related to c++

Method Call Chaining; returning a pointer vs a reference? How can I tell if an algorithm is efficient? Difference between opening a file in binary vs text How can compare-and-swap be used for a wait-free mutual exclusion for any shared data structure? Install Qt on Ubuntu #include errors detected in vscode Cannot open include file: 'stdio.h' - Visual Studio Community 2017 - C++ Error How to fix the error "Windows SDK version 8.1" was not found? Visual Studio 2017 errors on standard headers How do I check if a Key is pressed on C++

Examples related to math

How to do perspective fixing? How to pad a string with leading zeros in Python 3 How can I use "e" (Euler's number) and power operation in python 2.7 numpy max vs amax vs maximum Efficiently getting all divisors of a given number Using atan2 to find angle between two vectors How to calculate percentage when old value is ZERO Finding square root without using sqrt function? Exponentiation in Python - should I prefer ** operator instead of math.pow and math.sqrt? How do I get the total number of unique pairs of a set in the database?

Examples related to matrix

How to get element-wise matrix multiplication (Hadamard product) in numpy? How can I plot a confusion matrix? Error: stray '\240' in program What does the error "arguments imply differing number of rows: x, y" mean? How to input matrix (2D list) in Python? Difference between numpy.array shape (R, 1) and (R,) Counting the number of non-NaN elements in a numpy ndarray in Python Inverse of a matrix using numpy How to create an empty matrix in R? numpy matrix vector multiplication

Examples related to linear-algebra

Rotating a Vector in 3D Space "Cloning" row or column vectors What are the most widely used C++ vector/matrix math/linear algebra libraries, and their cost and benefit tradeoffs? Python Inverse of a Matrix