[assembly] What is the difference between MOV and LEA?

I would like to know what the difference between these instructions is:

MOV AX, [TABLE-ADDR]

and

LEA AX, [TABLE-ADDR]

This question is related to assembly x86 instruction-set

The answer is


The instruction MOV reg,addr means read a variable stored at address addr into register reg. The instruction LEA reg,addr means read the address (not the variable stored at the address) into register reg.

Another form of the MOV instruction is MOV reg,immdata which means read the immediate data (i.e. constant) immdata into register reg. Note that if the addr in LEA reg,addr is just a constant (i.e. a fixed offset) then that LEA instruction is essentially exactly the same as an equivalent MOV reg,immdata instruction that loads the same constant as immediate data.


Basically ... "Move into REG ... after computing it..." it seems to be nice for other purposes as well :)

if you just forget that the value is a pointer you can use it for code optimizations/minimization ...what ever..

MOV EBX , 1
MOV ECX , 2

;//with 1 instruction you got result of 2 registers in 3rd one ...
LEA EAX , [EBX+ECX+5]

EAX = 8

originaly it would be:

MOV EAX, EBX
ADD EAX, ECX
ADD EAX, 5

None of the previous answers quite got to the bottom of my own confusion, so I'd like to add my own.

What I was missing is that lea operations treat the use of parentheses different than how mov does.

Think of C. Let's say I have an array of long that I call array. Now the expression array[i] performs a dereference, loading the value from memory at the address array + i * sizeof(long) [1].

On the other hand, consider the expression &array[i]. This still contains the sub-expression array[i], but no dereferencing is performed! The meaning of array[i] has changed. It no longer means to perform a deference but instead acts as a kind of a specification, telling & what memory address we're looking for. If you like, you could alternatively think of the & as "cancelling out" the dereference.

Because the two use-cases are similar in many ways, they share the syntax array[i], but the existence or absence of a & changes how that syntax is interpreted. Without &, it's a dereference and actually reads from the array. With &, it's not. The value array + i * sizeof(long) is still calculated, but it is not dereferenced.

The situation is very similar with mov and lea. With mov, a dereference occurs that does not happen with lea. This is despite the use of parentheses that occurs in both. For instance, movq (%r8), %r9 and leaq (%r8), %r9. With mov, these parentheses mean "dereference"; with lea, they don't. This is similar to how array[i] only means "dereference" when there is no &.

An example is in order.

Consider the code

movq (%rdi, %rsi, 8), %rbp

This loads the value at the memory location %rdi + %rsi * 8 into the register %rbp. That is: get the value in the register %rdi and the value in the register %rsi. Multiply the latter by 8, and then add it to the former. Find the value at this location and place it into the register %rbp.

This code corresponds to the C line x = array[i];, where array becomes %rdi and i becomes %rsi and x becomes %rbp. The 8 is the length of the data type contained in the array.

Now consider similar code that uses lea:

leaq (%rdi, %rsi, 8), %rbp

Just as the use of movq corresponded to dereferencing, the use of leaq here corresponds to not dereferencing. This line of assembly corresponds to the C line x = &array[i];. Recall that & changes the meaning of array[i] from dereferencing to simply specifying a location. Likewise, the use of leaq changes the meaning of (%rdi, %rsi, 8) from dereferencing to specifying a location.

The semantics of this line of code are as follows: get the value in the register %rdi and the value in the register %rsi. Multiply the latter by 8, and then add it to the former. Place this value into the register %rbp. No load from memory is involved, just arithmetic operations [2].

Note that the only difference between my descriptions of leaq and movq is that movq does a dereference, and leaq doesn't. In fact, to write the leaq description, I basically copy+pasted the description of movq, and then removed "Find the value at this location".

To summarize: movq vs. leaq is tricky because they treat the use of parentheses, as in (%rsi) and (%rdi, %rsi, 8), differently. In movq (and all other instruction except lea), these parentheses denote a genuine dereference, whereas in leaq they do not and are purely convenient syntax.


[1] I've said that when array is an array of long, the expression array[i] loads the value from the address array + i * sizeof(long). This is true, but there's a subtlety that should be addressed. If I write the C code

long x = array[5];

this is not the same as typing

long x = *(array + 5 * sizeof(long));

It seems that it should be based on my previous statements, but it's not.

What's going on is that C pointer addition has a trick to it. Say I have a pointer p pointing to values of type T. The expression p + i does not mean "the position at p plus i bytes". Instead, the expression p + i actually means "the position at p plus i * sizeof(T) bytes".

The convenience of this is that to get "the next value" we just have to write p + 1 instead of p + 1 * sizeof(T).

This means that the C code long x = array[5]; is actually equivalent to

long x = *(array + 5)

because C will automatically multiply the 5 by sizeof(long).

So in the context of this StackOverflow question, how is this all relevant? It means that when I say "the address array + i * sizeof(long)", I do not mean for "array + i * sizeof(long)" to be interpreted as a C expression. I am doing the multiplication by sizeof(long) myself in order to make my answer more explicit, but understand that due to that, this expression should not be read as C. Just as normal math that uses C syntax.

[2] Side note: because all lea does is arithmetic operations, its arguments don't actually have to refer to valid addresses. For this reason, it's often used to perform pure arithmetic on values that may not be intended to be dereferenced. For instance, cc with -O2 optimization translates

long f(long x) {
  return x * 5;
}

into the following (irrelevant lines removed):

f:
  leaq (%rdi, %rdi, 4), %rax  # set %rax to %rdi + %rdi * 4
  ret

MOV can do same thing as LEA [label], but MOV instruction contain the effective address inside the instruction itself as an immediate constant (calculated in advance by the assembler). LEA uses PC-relative to calculate the effective address during the execution of the instruction.


In NASM syntax:

mov eax, var       == lea eax, [var]   ; i.e. mov r32, imm32
lea eax, [var+16]  == mov eax, var+16
lea eax, [eax*4]   == shl eax, 2        ; but without setting flags

In MASM syntax, use OFFSET var to get a mov-immediate instead of a load.


LEA (Load Effective Address) is a shift-and-add instruction. It was added to 8086 because hardware is there to decode and calculate adressing modes.


The difference is subtle but important. The MOV instruction is a 'MOVe' effectively a copy of the address that the TABLE-ADDR label stands for. The LEA instruction is a 'Load Effective Address' which is an indirected instruction, which means that TABLE-ADDR points to a memory location at which the address to load is found.

Effectively using LEA is equivalent to using pointers in languages such as C, as such it is a powerful instruction.


Lets understand this with a example.

mov eax, [ebx] and

lea eax, [ebx] Suppose value in ebx is 0x400000. Then mov will go to address 0x400000 and copy 4 byte of data present their to eax register.Whereas lea will copy the address 0x400000 into eax. So, after the execution of each instruction value of eax in each case will be (assuming at memory 0x400000 contain is 30).

eax = 30 (in case of mov) eax = 0x400000 (in case of lea) For definition mov copy the data from rm32 to destination (mov dest rm32) and lea(load effective address) will copy the address to destination (mov dest rm32).


As stated in the other answers:

  • MOV will grab the data at the address inside the brackets and place that data into the destination operand.
  • LEA will perform the calculation of the address inside the brackets and place that calculated address into the destination operand. This happens without actually going out to the memory and getting the data. The work done by LEA is in the calculating of the "effective address".

Because memory can be addressed in several different ways (see examples below), LEA is sometimes used to add or multiply registers together without using an explicit ADD or MUL instruction (or equivalent).

Since everyone is showing examples in Intel syntax, here are some in AT&T syntax:

MOVL 16(%ebp), %eax       /* put long  at  ebp+16  into eax */
LEAL 16(%ebp), %eax       /* add 16 to ebp and store in eax */

MOVQ (%rdx,%rcx,8), %rax  /* put qword at  rcx*8 + rdx  into rax */
LEAQ (%rdx,%rcx,8), %rax  /* put value of "rcx*8 + rdx" into rax */

MOVW 5(%bp,%si), %ax      /* put word  at  si + bp + 5  into ax */
LEAW 5(%bp,%si), %ax      /* put value of "si + bp + 5" into ax */

MOVQ 16(%rip), %rax       /* put qword at rip + 16 into rax                 */
LEAQ 16(%rip), %rax       /* add 16 to instruction pointer and store in rax */

MOVL label(,1), %eax      /* put long at label into eax            */
LEAL label(,1), %eax      /* put the address of the label into eax */

If you only specify a literal, there is no difference. LEA has more abilities, though, and you can read about them here:

http://www.oopweb.com/Assembly/Documents/ArtOfAssembly/Volume/Chapter_6/CH06-1.html#HEADING1-136


It depends on the used assembler, because

mov ax,table_addr

in MASM works as

mov ax,word ptr[table_addr]

So it loads the first bytes from table_addr and NOT the offset to table_addr. You should use instead

mov ax,offset table_addr

or

lea ax,table_addr

which works the same.

lea version also works fine if table_addr is a local variable e.g.

some_procedure proc

local table_addr[64]:word

lea ax,table_addr