I like Ibu's one but, I think I have a better solution using his idea.
//Fade In.
element.style.opacity = 0;
var Op1 = 0;
var Op2 = 1;
var foo1, foo2;
foo1 = setInterval(Timer1, 20);
function Timer1()
{
element.style.opacity = Op1;
Op1 = Op1 + .01;
console.log(Op1); //Option, but I recommend it for testing purposes.
if (Op1 > 1)
{
clearInterval(foo1);
foo2 = setInterval(Timer3, 20);
}
}
This solution uses a additional equation unlike Ibu's solution, which used a multiplicative equation. The way it works is it takes a time increment (t), an opacity increment (o), and a opacity limit (l) in the equation, which is: (T = time of fade in miliseconds) [T = (l/o)*t]. the "20" represents the time increments or intervals (t), the ".01" represents the opacity increments (o), and the 1 represents the opacity limit (l). When you plug the numbers in the equation you get 2000 milliseconds (or 2 seconds). Here is the console log:
0.01
0.02
0.03
0.04
0.05
0.060000000000000005
0.07
0.08
0.09
0.09999999999999999
0.10999999999999999
0.11999999999999998
0.12999999999999998
0.13999999999999999
0.15
0.16
0.17
0.18000000000000002
0.19000000000000003
0.20000000000000004
0.21000000000000005
0.22000000000000006
0.23000000000000007
0.24000000000000007
0.25000000000000006
0.26000000000000006
0.2700000000000001
0.2800000000000001
0.2900000000000001
0.3000000000000001
0.3100000000000001
0.3200000000000001
0.3300000000000001
0.34000000000000014
0.35000000000000014
0.36000000000000015
0.37000000000000016
0.38000000000000017
0.3900000000000002
0.4000000000000002
0.4100000000000002
0.4200000000000002
0.4300000000000002
0.4400000000000002
0.45000000000000023
0.46000000000000024
0.47000000000000025
0.48000000000000026
0.49000000000000027
0.5000000000000002
0.5100000000000002
0.5200000000000002
0.5300000000000002
0.5400000000000003
0.5500000000000003
0.5600000000000003
0.5700000000000003
0.5800000000000003
0.5900000000000003
0.6000000000000003
0.6100000000000003
0.6200000000000003
0.6300000000000003
0.6400000000000003
0.6500000000000004
0.6600000000000004
0.6700000000000004
0.6800000000000004
0.6900000000000004
0.7000000000000004
0.7100000000000004
0.7200000000000004
0.7300000000000004
0.7400000000000004
0.7500000000000004
0.7600000000000005
0.7700000000000005
0.7800000000000005
0.7900000000000005
0.8000000000000005
0.8100000000000005
0.8200000000000005
0.8300000000000005
0.8400000000000005
0.8500000000000005
0.8600000000000005
0.8700000000000006
0.8800000000000006
0.8900000000000006
0.9000000000000006
0.9100000000000006
0.9200000000000006
0.9300000000000006
0.9400000000000006
0.9500000000000006
0.9600000000000006
0.9700000000000006
0.9800000000000006
0.9900000000000007
1.0000000000000007
1.0100000000000007
Notice how the opacity follows the opacity increment amount of .01 just like in the code. If you use the code Ibu made,
//I made slight edits but keeped the ESSENTIAL stuff in it.
var op = 0.01; // initial opacity
var timer = setInterval(function () {
if (op >= 1){
clearInterval(timer);
}
element.style.opacity = op;
op += op * 0.1;
}, 20);
you will get these numbers (or something similar) in you console log. Here is what I got.
0.0101
0.010201
0.01030301
0.0104060401
0.010510100501
0.010615201506009999
0.0107213535210701
0.0108285670562808
0.010936852726843608
0.011046221254112044
0.011156683466653165
0.011268250301319695
0.011380932804332892
0.01149474213237622
0.011609689553699983
0.011725786449236983
0.011843044313729352
0.011961474756866645
0.012081089504435313
0.012201900399479666
0.012323919403474463
0.012447158597509207
0.0125716301834843
0.012697346485319142
0.012824319950172334
0.012952563149674056
0.013082088781170797
0.013212909668982505
0.01334503876567233
0.013478489153329052
0.013613274044862343
0.013749406785310966
0.013886900853164076
0.014025769861695717
0.014166027560312674
0.014307687835915801
0.01445076471427496
0.01459527236141771
0.014741225085031886
0.014888637335882205
0.015037523709241028
0.015187898946333437
0.01533977793579677
0.015493175715154739
0.015648107472306286
0.01580458854702935
0.015962634432499644
0.01612226077682464
0.016283483384592887
0.016446318218438817
0.016610781400623206
0.01677688921462944
0.016944658106775732
0.01711410468784349
0.017285245734721923
0.017458098192069144
0.017632679173989835
0.01780900596572973
0.01798709602538703
0.018166966985640902
0.01834863665549731
0.018532123022052285
0.018717444252272807
0.018904618694795535
0.01909366488174349
0.019284601530560927
0.019477447545866538
0.0196722220213252
0.019868944241538455
0.02006763368395384
0.02026831002079338
0.020470993121001313
0.020675703052211326
0.02088246008273344
0.021091284683560776
0.021302197530396385
0.02151521950570035
0.021730371700757353
0.021947675417764927
0.022167152171942577
0.022388823693662
0.022612711930598623
0.022838839049904608
0.023067227440403654
0.02329789971480769
0.023530878711955767
0.023766187499075324
0.024003849374066077
0.02424388786780674
0.024486326746484807
0.024731190013949654
0.024978501914089152
0.025228286933230044
0.025480569802562344
0.025735375500587968
0.025992729255593847
0.026252656548149785
0.026515183113631283
0.026780334944767597
0.027048138294215273
0.027318619677157426
0.027591805873929
0.02786772393266829
0.028146401171994972
0.028427865183714922
0.02871214383555207
0.02899926527390759
0.029289257926646668
0.029582150505913136
0.029877972010972267
0.030176751731081992
0.030478519248392812
0.03078330444087674
0.031091137485285508
0.031402048860138365
0.03171606934873975
0.03203323004222715
0.03235356234264942
0.03267709796607591
0.03300386894573667
0.03333390763519403
0.03366724671154597
0.03400391917866143
0.03434395837044805
0.03468739795415253
0.03503427193369406
0.035384614653031
0.035738460799561306
0.03609584540755692
0.03645680386163249
0.03682137190024882
0.03718958561925131
0.03756148147544382
0.03793709629019826
0.03831646725310024
0.038699631925631243
0.03908662824488755
0.039477494527336426
0.03987226947260979
0.040270992167335894
0.04067370208900925
0.04108043910989934
0.04149124350099834
0.04190615593600832
0.042325217495368404
0.04274846967032209
0.04317595436702531
0.04360771391069556
0.044043791049802515
0.04448422896030054
0.04492907124990354
0.04537836196240258
0.045832145582026605
0.04629046703784687
0.04675337170822534
0.047220905425307595
0.04769311447956067
0.04817004562435628
0.04865174608059984
0.04913826354140584
0.0496296461768199
0.0501259426385881
0.05062720206497398
0.05113347408562372
0.05164480882647996
0.05216125691474476
0.05268286948389221
0.053209698178731134
0.05374179516051845
0.05427921311212363
0.05482200524324487
0.05537022529567732
0.05592392754863409
0.056483166824120426
0.05704799849236163
0.05761847847728525
0.0581946632620581
0.05877660989467868
0.059364375993625464
0.05995801975356172
0.060557599951097336
0.06116317595060831
0.06177480771011439
0.06239255578721554
0.0630164813450877
0.06364664615853857
0.06428311262012396
0.0649259437463252
0.06557520318378844
0.06623095521562633
0.0668932647677826
0.06756219741546042
0.06823781938961503
0.06892019758351117
0.06960939955934628
0.07030549355493974
0.07100854849048914
0.07171863397539403
0.07243582031514798
0.07316017851829945
0.07389178030348245
0.07463069810651728
0.07537700508758245
0.07613077513845827
0.07689208288984285
0.07766100371874128
0.0784376137559287
0.07922198989348798
0.08001420979242287
0.0808143518903471
0.08162249540925057
0.08243872036334307
0.0832631075669765
0.08409573864264626
0.08493669602907272
0.08578606298936345
0.08664392361925709
0.08751036285544966
0.08838546648400417
0.08926932114884421
0.09016201436033265
0.09106363450393598
0.09197427084897535
0.0928940135574651
0.09382295369303975
0.09476118322997015
0.09570879506226986
0.09666588301289256
0.09763254184302148
0.0986088672614517
0.09959495593406621
0.10059090549340688
0.10159681454834095
0.10261278269382436
0.1036389105207626
0.10467529962597022
0.10572205262222992
0.10677927314845222
0.10784706587993674
0.10892553653873611
0.11001479190412347
0.1111149398231647
0.11222608922139635
0.11334835011361032
0.11448183361474643
0.11562665195089389
0.11678291847040283
0.11795074765510685
0.11913025513165793
0.1203215576829745
0.12152477325980425
0.12274002099240229
0.12396742120232632
0.12520709541434957
0.12645916636849308
0.127723758032178
0.12900099561249978
0.13029100556862477
0.13159391562431103
0.13290985478055414
0.1342389533283597
0.13558134286164328
0.1369371562902597
0.1383065278531623
0.13968959313169393
0.14108648906301088
0.142497353953641
0.1439223274931774
0.14536155076810917
0.14681516627579025
0.14828331793854815
0.14976615111793362
0.15126381262911295
0.15277645075540408
0.15430421526295812
0.1558472574155877
0.15740572998974356
0.158979787289641
0.1605695851625374
0.16217528101416276
0.16379703382430438
0.16543500416254742
0.1670893542041729
0.16876024774621462
0.17044785022367676
0.17215232872591352
0.17387385201317265
0.17561259053330439
0.17736871643863744
0.1791424036030238
0.18093382763905405
0.1827431659154446
0.18457059757459904
0.18641630355034502
0.1882804665858485
0.19016327125170698
0.19206490396422404
0.19398555300386627
0.19592540853390494
0.197884662619244
0.19986350924543644
0.20186214433789082
0.20388076578126973
0.20591957343908243
0.20797876917347324
0.21005855686520797
0.21215914243386005
0.21428073385819865
0.21642354119678064
0.21858777660874845
0.22077365437483593
0.2229813909185843
0.22521120482777013
0.22746331687604782
0.2297379500448083
0.23203532954525638
0.23435568284070896
0.23669923966911605
0.2390662320658072
0.24145689438646528
0.24387146333032994
0.24631017796363325
0.24877327974326957
0.25126101254070227
0.2537736226661093
0.2563113588927704
0.2588744724816981
0.26146321720651505
0.2640778493785802
0.266718627872366
0.26938581415108964
0.27207967229260055
0.27480046901552657
0.27754847370568186
0.28032395844273866
0.28312719802716607
0.28595847000743774
0.2888180547075121
0.2917062352545872
0.2946232976071331
0.2975695305832044
0.3005452258890364
0.3035506781479268
0.3065861849294061
0.3096520467787002
0.3127485672464872
0.31587605291895204
0.31903481344814155
0.322225161582623
0.3254474131984492
0.3287018873304337
0.33198890620373805
0.33530879526577545
0.3386618832184332
0.34204850205061754
0.3454689870711237
0.34892367694183496
0.35241291371125333
0.35593704284836586
0.3594964132768495
0.363091377409618
0.3667222911837142
0.3703895140955513
0.37409340923650686
0.37783434332887195
0.38161268676216065
0.38542881362978226
0.3892831017660801
0.3931759327837409
0.3971076921115783
0.40107876903269407
0.405089556723021
0.4091404522902512
0.4132318568131537
0.41736417538128523
0.4215378171350981
0.42575319530644906
0.43001072725951356
0.43431083453210867
0.43865394287742976
0.4430404823062041
0.44747088712926614
0.4519455960005588
0.45646505196056436
0.46102970248017
0.4656399995049717
0.47029639950002144
0.47499936349502164
0.47974935712997185
0.48454685070127157
0.4893923192082843
0.4942862424003671
0.4992291048243708
0.5042213958726145
0.5092636098313407
0.5143562459296541
0.5194998083889507
0.5246948064728402
0.5299417545375685
0.5352411720829442
0.5405935838037736
0.5459995196418114
0.5514595148382295
0.5569741099866118
0.5625438510864779
0.5681692895973427
0.5738509824933161
0.5795894923182493
0.5853853872414317
0.5912392411138461
0.5971516335249846
0.6031231498602344
0.6091543813588367
0.615245925172425
0.6213983844241493
0.6276123682683908
0.6338884919510748
0.6402273768705855
0.6466296506392913
0.6530959471456843
0.6596269066171412
0.6662231756833126
0.6728854074401457
0.6796142615145472
0.6864104041296927
0.6932745081709896
0.7002072532526995
0.7072093257852266
0.7142814190430788
0.7214242332335097
0.7286384755658448
0.7359248603215033
0.7432841089247183
0.7507169500139654
0.7582241195141051
0.7658063607092461
0.7734644243163386
0.7811990685595019
0.789011059245097
0.7969011698375479
0.8048701815359234
0.8129188833512826
0.8210480721847955
0.8292585529066434
0.8375511384357098
0.8459266498200669
0.8543859163182677
0.8629297754814503
0.8715590732362648
0.8802746639686274
0.8890774106083137
0.8979681847143969
0.9069478665615408
0.9160173452271562
0.9251775186794278
0.9344292938662221
0.9437735868048843
0.9532113226729332
0.9627434358996625
0.9723708702586591
0.9820945789612456
0.9919155247508581
1.0018346799983666
1.0118530267983503
Notice that there is no discernible pattern. If you ran Ibu's code, you would never know how long the fade was. You would have to grab a timer and guess and check 2 seconds. Nonetheless, Ibu's code did make a pretty nice fade in (it probably works for fade out. I don't know because I didn't use a fade out yet). My code will also work for a fade out. Let's just say you wanted 2 seconds for a fade out. You can do that with my code. Here is how it would look:
//Fade out. (Continued from the fade in.
function Timer2()
{
element.style.opacity = Op2;
Op2 = Op2 - .01;
console.log(Op2); //Option, but I recommend it for testing purposes.
if (Op2 < 0)
{
clearInterval(foo2);
}
}
All I did was change the opacity to 1 (or fully opaque). I changed the opacity increment to -.01 so it would start turning invisible. Lastly, I changed the opacity limit to 0. When it hits the opacity limit, the timer will stop. Same as the last one, except it used 1 instead of 0. When you run the code, here is what the console log should relatively look like.
.99
0.98
0.97
0.96
0.95
0.94
0.9299999999999999
0.9199999999999999
0.9099999999999999
0.8999999999999999
0.8899999999999999
0.8799999999999999
0.8699999999999999
0.8599999999999999
0.8499999999999999
0.8399999999999999
0.8299999999999998
0.8199999999999998
0.8099999999999998
0.7999999999999998
0.7899999999999998
0.7799999999999998
0.7699999999999998
0.7599999999999998
0.7499999999999998
0.7399999999999998
0.7299999999999998
0.7199999999999998
0.7099999999999997
0.6999999999999997
0.6899999999999997
0.6799999999999997
0.6699999999999997
0.6599999999999997
0.6499999999999997
0.6399999999999997
0.6299999999999997
0.6199999999999997
0.6099999999999997
0.5999999999999996
0.5899999999999996
0.5799999999999996
0.5699999999999996
0.5599999999999996
0.5499999999999996
0.5399999999999996
0.5299999999999996
0.5199999999999996
0.5099999999999996
0.49999999999999956
0.48999999999999955
0.47999999999999954
0.46999999999999953
0.4599999999999995
0.4499999999999995
0.4399999999999995
0.4299999999999995
0.4199999999999995
0.4099999999999995
0.39999999999999947
0.38999999999999946
0.37999999999999945
0.36999999999999944
0.35999999999999943
0.3499999999999994
0.3399999999999994
0.3299999999999994
0.3199999999999994
0.3099999999999994
0.2999999999999994
0.28999999999999937
0.27999999999999936
0.26999999999999935
0.25999999999999934
0.24999999999999933
0.23999999999999932
0.22999999999999932
0.2199999999999993
0.2099999999999993
0.1999999999999993
0.18999999999999928
0.17999999999999927
0.16999999999999926
0.15999999999999925
0.14999999999999925
0.13999999999999924
0.12999999999999923
0.11999999999999923
0.10999999999999924
0.09999999999999924
0.08999999999999925
0.07999999999999925
0.06999999999999926
0.059999999999999255
0.04999999999999925
0.03999999999999925
0.02999999999999925
0.019999999999999248
0.009999999999999247
-7.528699885739343e-16
-0.010000000000000753
As you can see, the .01 pattern still exists in the fade out. Both fades are smooth and precise. I hope these codes helped you or gave you insight on the topic. If you have any additions or suggestions let me know. Thank you for taking the time to view this!