The first option in @Nathan Skerl's list is what was implemented in a project I once worked with, where a similar relationship was established between three tables. (One of them referenced two others, one at a time.)
So, the referencing table had two foreign key columns, and also it had a constraint to guarantee that exactly one table (not both, not neither) was referenced by a single row.
Here's how it could look when applied to your tables:
CREATE TABLE dbo.[Group]
(
ID int NOT NULL CONSTRAINT PK_Group PRIMARY KEY,
Name varchar(50) NOT NULL
);
CREATE TABLE dbo.[User]
(
ID int NOT NULL CONSTRAINT PK_User PRIMARY KEY,
Name varchar(50) NOT NULL
);
CREATE TABLE dbo.Ticket
(
ID int NOT NULL CONSTRAINT PK_Ticket PRIMARY KEY,
OwnerGroup int NULL
CONSTRAINT FK_Ticket_Group FOREIGN KEY REFERENCES dbo.[Group] (ID),
OwnerUser int NULL
CONSTRAINT FK_Ticket_User FOREIGN KEY REFERENCES dbo.[User] (ID),
Subject varchar(50) NULL,
CONSTRAINT CK_Ticket_GroupUser CHECK (
CASE WHEN OwnerGroup IS NULL THEN 0 ELSE 1 END +
CASE WHEN OwnerUser IS NULL THEN 0 ELSE 1 END = 1
)
);
As you can see, the Ticket
table has two columns, OwnerGroup
and OwnerUser
, both of which are nullable foreign keys. (The respective columns in the other two tables are made primary keys accordingly.) The CK_Ticket_GroupUser
check constraint ensures that only one of the two foreign key columns contains a reference (the other being NULL, that's why both have to be nullable).
(The primary key on Ticket.ID
is not necessary for this particular implementation, but it definitely wouldn't harm to have one in a table like this.)