It's an old question, but I found this can be done easily with Spacy. Once the document is read, a simple api similarity
can be used to find the cosine similarity between the document vectors.
import spacy
nlp = spacy.load('en')
doc1 = nlp(u'Hello hi there!')
doc2 = nlp(u'Hello hi there!')
doc3 = nlp(u'Hey whatsup?')
print doc1.similarity(doc2) # 0.999999954642
print doc2.similarity(doc3) # 0.699032527716
print doc1.similarity(doc3) # 0.699032527716