I favor the dplyr approach.
group_by(id)
followed by either
filter(row_number()==1)
orslice(1)
orslice_head(1)
#(dplyr => 1.0)top_n(n = -1)
top_n()
internally uses the rank function.
Negative selects from the bottom of rank.In some instances arranging the ids after the group_by can be necessary.
library(dplyr)
# using filter(), top_n() or slice()
m1 <-
test %>%
group_by(id) %>%
filter(row_number()==1)
m2 <-
test %>%
group_by(id) %>%
slice(1)
m3 <-
test %>%
group_by(id) %>%
top_n(n = -1)
All three methods return the same result
# A tibble: 5 x 2
# Groups: id [5]
id string
<int> <fct>
1 1 A
2 2 B
3 3 C
4 4 D
5 5 E