[math] How to convert latitude or longitude to meters?

If I have a latitude or longitude reading in standard NMEA format is there an easy way / formula to convert that reading to meters, which I can then implement in Java (J9)?

Edit: Ok seems what I want to do is not possible easily, however what I really want to do is:

Say I have a lat and long of a way point and a lat and long of a user is there an easy way to compare them to decide when to tell the user they are within a reasonably close distance of the way point? I realise reasonable is subject but is this easily do-able or still overly maths-y?

This question is related to math geolocation geo

The answer is


If you want a simple solution then use the Haversine formula as outlined by the other comments. If you have an accuracy sensitive application keep in mind the Haversine formula does not guarantee an accuracy better then 0.5% as it is assuming the earth is a sphere. To consider that Earth is a oblate spheroid consider using Vincenty's formulae. Additionally, I'm not sure what radius we should use with the Haversine formula: {Equator: 6,378.137 km, Polar: 6,356.752 km, Volumetric: 6,371.0088 km}.


You need to convert the coordinates to radians to do the spherical geometry. Once converted, then you can calculate a distance between the two points. The distance then can be converted to any measure you want.


If its sufficiently close you can get away with treating them as coordinates on a flat plane. This works on say, street or city level if perfect accuracy isnt required and all you need is a rough guess on the distance involved to compare with an arbitrary limit.


For approximating short distances between two coordinates I used formulas from http://en.wikipedia.org/wiki/Lat-lon:

m_per_deg_lat = 111132.954 - 559.822 * cos( 2 * latMid ) + 1.175 * cos( 4 * latMid);
m_per_deg_lon = 111132.954 * cos ( latMid );

.

In the code below I've left the raw numbers to show their relation to the formula from wikipedia.

double latMid, m_per_deg_lat, m_per_deg_lon, deltaLat, deltaLon,dist_m;

latMid = (Lat1+Lat2 )/2.0;  // or just use Lat1 for slightly less accurate estimate


m_per_deg_lat = 111132.954 - 559.822 * cos( 2.0 * latMid ) + 1.175 * cos( 4.0 * latMid);
m_per_deg_lon = (3.14159265359/180 ) * 6367449 * cos ( latMid );

deltaLat = fabs(Lat1 - Lat2);
deltaLon = fabs(Lon1 - Lon2);

dist_m = sqrt (  pow( deltaLat * m_per_deg_lat,2) + pow( deltaLon * m_per_deg_lon , 2) );

The wikipedia entry states that the distance calcs are within 0.6m for 100km longitudinally and 1cm for 100km latitudinally but I have not verified this as anywhere near that accuracy is fine for my use.


There are many tools that will make this easy. See monjardin's answer for more details about what's involved.

However, doing this isn't necessarily difficult. It sounds like you're using Java, so I would recommend looking into something like GDAL. It provides java wrappers for their routines, and they have all the tools required to convert from Lat/Lon (geographic coordinates) to UTM (projected coordinate system) or some other reasonable map projection.

UTM is nice, because it's meters, so easy to work with. However, you will need to get the appropriate UTM zone for it to do a good job. There are some simple codes available via googling to find an appropriate zone for a lat/long pair.


Latitudes and longitudes specify points, not distances, so your question is somewhat nonsensical. If you're asking about the shortest distance between two (lat, lon) points, see this Wikipedia article on great-circle distances.


There are quite a few ways to calculate this. All of them use aproximations of spherical trigonometry where the radius is the one of the earth.

try http://www.movable-type.co.uk/scripts/latlong.html for a bit of methods and code in different languages.


Based on average distance for degress in the Earth.

1° = 111km;

Converting this for radians and dividing for meters, take's a magic number for the RAD, in meters: 0.000008998719243599958;

then:

const RAD = 0.000008998719243599958;
Math.sqrt(Math.pow(lat1 - lat2, 2) + Math.pow(long1 - long2, 2)) / RAD;

The earth is an annoyingly irregular surface, so there is no simple formula to do this exactly. You have to live with an approximate model of the earth, and project your coordinates onto it. The model I typically see used for this is WGS 84. This is what GPS devices usually use to solve the exact same problem.

NOAA has some software you can download to help with this on their website.


    'below is from
'http://www.zipcodeworld.com/samples/distance.vbnet.html
Public Function distance(ByVal lat1 As Double, ByVal lon1 As Double, _
                         ByVal lat2 As Double, ByVal lon2 As Double, _
                         Optional ByVal unit As Char = "M"c) As Double
    Dim theta As Double = lon1 - lon2
    Dim dist As Double = Math.Sin(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) + _
                            Math.Cos(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * _
                            Math.Cos(deg2rad(theta))
    dist = Math.Acos(dist)
    dist = rad2deg(dist)
    dist = dist * 60 * 1.1515
    If unit = "K" Then
        dist = dist * 1.609344
    ElseIf unit = "N" Then
        dist = dist * 0.8684
    End If
    Return dist
End Function
Public Function Haversine(ByVal lat1 As Double, ByVal lon1 As Double, _
                         ByVal lat2 As Double, ByVal lon2 As Double, _
                         Optional ByVal unit As Char = "M"c) As Double
    Dim R As Double = 6371 'earth radius in km
    Dim dLat As Double
    Dim dLon As Double
    Dim a As Double
    Dim c As Double
    Dim d As Double
    dLat = deg2rad(lat2 - lat1)
    dLon = deg2rad((lon2 - lon1))
    a = Math.Sin(dLat / 2) * Math.Sin(dLat / 2) + Math.Cos(deg2rad(lat1)) * _
            Math.Cos(deg2rad(lat2)) * Math.Sin(dLon / 2) * Math.Sin(dLon / 2)
    c = 2 * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1 - a))
    d = R * c
    Select Case unit.ToString.ToUpper
        Case "M"c
            d = d * 0.62137119
        Case "N"c
            d = d * 0.5399568
    End Select
    Return d
End Function
Private Function deg2rad(ByVal deg As Double) As Double
    Return (deg * Math.PI / 180.0)
End Function
Private Function rad2deg(ByVal rad As Double) As Double
    Return rad / Math.PI * 180.0
End Function

One nautical mile (1852 meters) is defined as one arcminute of longitude at the equator. However, you need to define a map projection (see also UTM) in which you are working for the conversion to really make sense.


Here is the R version of b-h-'s function, just in case:

measure <- function(lon1,lat1,lon2,lat2) {
    R <- 6378.137                                # radius of earth in Km
    dLat <- (lat2-lat1)*pi/180
    dLon <- (lon2-lon1)*pi/180
    a <- sin((dLat/2))^2 + cos(lat1*pi/180)*cos(lat2*pi/180)*(sin(dLon/2))^2
    c <- 2 * atan2(sqrt(a), sqrt(1-a))
    d <- R * c
    return (d * 1000)                            # distance in meters
}

Given you're looking for a simple formula, this is probably the simplest way to do it, assuming that the Earth is a sphere with a circumference of 40075 km.

Length in meters of 1° of latitude = always 111.32 km

Length in meters of 1° of longitude = 40075 km * cos( latitude ) / 360


To convert latitude and longitude in x and y representation you need to decide what type of map projection to use. As for me, Elliptical Mercator seems very well. Here you can find an implementation (in Java too).


Examples related to math

How to do perspective fixing? How to pad a string with leading zeros in Python 3 How can I use "e" (Euler's number) and power operation in python 2.7 numpy max vs amax vs maximum Efficiently getting all divisors of a given number Using atan2 to find angle between two vectors How to calculate percentage when old value is ZERO Finding square root without using sqrt function? Exponentiation in Python - should I prefer ** operator instead of math.pow and math.sqrt? How do I get the total number of unique pairs of a set in the database?

Examples related to geolocation

getCurrentPosition() and watchPosition() are deprecated on insecure origins Can we locate a user via user's phone number in Android? What is meaning of negative dbm in signal strength? How to get current location in Android Google API for location, based on user IP address How to get a time zone from a location using latitude and longitude coordinates? How to display my location on Google Maps for Android API v2 Getting visitors country from their IP Does GPS require Internet? How to calculate distance from Wifi router using Signal Strength?

Examples related to geo

How to define object in array in Mongoose schema correctly with 2d geo index Getting distance between two points based on latitude/longitude Calculate the center point of multiple latitude/longitude coordinate pairs Given the lat/long coordinates, how can we find out the city/country? How to convert latitude or longitude to meters?