[r] dplyr change many data types

Since Nick's answer is deprecated by now and Rafael's comment is really useful, I want to add this as an Answer. If you want to change all factor columns to character use mutate_if:

dat %>% mutate_if(is.factor, as.character)

Also other functions are allowed. I for instance used iconv to change the encoding of all character columns:

dat %>% mutate_if(is.character, function(x){iconv(x, to = "ASCII//TRANSLIT")})

or to substitute all NA by 0 in numeric columns:

dat %>% mutate_if(is.numeric, function(x){ifelse(is.na(x), 0, x)})

Examples related to r

How to get AIC from Conway–Maxwell-Poisson regression via COM-poisson package in R? R : how to simply repeat a command? session not created: This version of ChromeDriver only supports Chrome version 74 error with ChromeDriver Chrome using Selenium How to show code but hide output in RMarkdown? remove kernel on jupyter notebook Function to calculate R2 (R-squared) in R Center Plot title in ggplot2 R ggplot2: stat_count() must not be used with a y aesthetic error in Bar graph R multiple conditions in if statement What does "The following object is masked from 'package:xxx'" mean?

Examples related to dataframe

Trying to merge 2 dataframes but get ValueError How to show all of columns name on pandas dataframe? Python Pandas - Find difference between two data frames Pandas get the most frequent values of a column Display all dataframe columns in a Jupyter Python Notebook How to convert column with string type to int form in pyspark data frame? Display/Print one column from a DataFrame of Series in Pandas Binning column with python pandas Selection with .loc in python Set value to an entire column of a pandas dataframe

Examples related to dplyr

R dplyr: Drop multiple columns How to specify "does not contain" in dplyr filter Select first and last row from grouped data Error: could not find function "%>%" Sum across multiple columns with dplyr Removing NA observations with dplyr::filter() Changing factor levels with dplyr mutate Change value of variable with dplyr dplyr change many data types What does %>% function mean in R?