The compatibility table given in the tensorflow site does not contain specific minor versions for cuda and cuDNN. However, if the specific versions are not met, there will be an error when you try to use tensorflow.
For tensorflow-gpu==1.12.0
and cuda==9.0
, the compatible cuDNN
version is 7.1.4
, which can be downloaded from here after registration.
You can check your cuda version using
nvcc --version
cuDNN version using
cat /usr/include/cudnn.h | grep CUDNN_MAJOR -A 2
tensorflow-gpu version using
pip freeze | grep tensorflow-gpu
UPDATE: Since tensorflow 2.0, has been released, I will share the compatible cuda and cuDNN versions for it as well (for Ubuntu 18.04).
tensorflow-gpu
= 2.0.0cuda
= 10.0cuDNN
= 7.6.0