[python] python numpy machine epsilon

I am trying to understand what is machine epsilon. According to the Wikipedia, it can be calculated as follows:

def machineEpsilon(func=float):
    machine_epsilon = func(1)
    while func(1)+func(machine_epsilon) != func(1):
        machine_epsilon_last = machine_epsilon
        machine_epsilon = func(machine_epsilon) / func(2)
    return machine_epsilon_last

However, it is suitable only for double precision numbers. I am interested in modifying it to support also single precision numbers. I read that numpy can be used, particularly numpy.float32 class. Can anybody help with modifying the function?

This question is related to python numpy epsilon

The answer is


It will already work, as David pointed out!

>>> def machineEpsilon(func=float):
...     machine_epsilon = func(1)
...     while func(1)+func(machine_epsilon) != func(1):
...         machine_epsilon_last = machine_epsilon
...         machine_epsilon = func(machine_epsilon) / func(2)
...     return machine_epsilon_last
... 
>>> machineEpsilon(float)
2.220446049250313e-16
>>> import numpy
>>> machineEpsilon(numpy.float64)
2.2204460492503131e-16
>>> machineEpsilon(numpy.float32)
1.1920929e-07

Another easy way to get epsilon is:

In [1]: 7./3 - 4./3 -1
Out[1]: 2.220446049250313e-16