I suppose better would be to use re.match() function. here is an example which may help you.
import re
import nltk
from nltk.tokenize import word_tokenize
nltk.download('punkt')
sentences = word_tokenize("I love to learn NLP \n 'a :(")
#for i in range(len(sentences)):
sentences = [word.lower() for word in sentences if re.match('^[a-zA-Z]+', word)]
sentences